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Abstract. This article continues the development of hardness magnification, an emerging
area that proposes a new strategy for showing strong complexity lower bounds by reducing
them to a refined analysis of weaker models, where combinatorial techniques might be
successful.

We consider gap versions of the meta-computational problems MKtP and MCSP, where
one needs to distinguish instances (strings or truth-tables) of complexity ≤ s1(N) from
instances of complexity≥ s2(N), and N = 2n denotes the input length. In MCSP, complexity
is measured by circuit size, while in MKtP one considers Levin’s notion of time-bounded
Kolmogorov complexity. (In our results, the parameters s1(N) and s2(N) are asymptotically
quite close, and the problems almost coincide with their standard formulations without a gap.)
We establish that for Gap-MKtP[s1,s2] and Gap-MCSP[s1,s2], a marginal improvement over
the state of the art in unconditional lower bounds in a variety of computational models would
imply explicit superpolynomial lower bounds, including P 6= NP.

Theorem. There exists a universal constant c ≥ 1 for which the following hold. If there
exists ε > 0 such that for every small enough β > 0
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(1) Gap-MCSP[2βn/cn,2βn] /∈ Circuit[N1+ε ], then NP* Circuit[poly].

(2) Gap-MKtP[2βn, 2βn + cn] /∈ B2-Formula[N2+ε ], then EXP* Formula[poly].

(3) Gap-MKtP[2βn, 2βn + cn] /∈U2-Formula[N3+ε ], then EXP* Formula[poly].

(4) Gap-MKtP[2βn, 2βn + cn] /∈ BP[N2+ε ], then EXP* BP[poly].

These results are complemented by lower bounds for Gap-MCSP and Gap-MKtP against
different models. For instance, the lower bound assumed in (1) holds for U2-formulas
of near-quadratic size, and lower bounds similar to (2) – (4) hold for various regimes of
parameters.

We also identify a natural computational model under which the hardness magnification
threshold for Gap-MKtP lies below existing lower bounds: U2-formulas that can compute
parity functions at the leaves (instead of just literals). As a consequence, if one managed to
adapt the existing lower bound techniques against such formulas to work with Gap-MKtP,
then EXP* NC1 would follow via hardness magnification.

1 Introduction

1.1 Context

Establishing limits on the efficiency of computations is widely considered to be one of the most
important open problems in computer science and mathematics. Unconditional lower bounds are known
in many restricted computational settings (see, e. g., [8, 27]), but progress in understanding the limitations
of more expressive devices has been slow and incremental (see [1] for a recent survey and references).
Table 1 summarizes the current landscape of unconditional lower bounds with respect to general circuits,
formulas, branching programs, bounded-depth threshold circuits, and bounded-depth circuits with modu-
lar gates. These constitute some of the most widely investigated models extending the weak computational
settings for which we already have explicit superpolynomial lower bounds.

A conditional explanation has been proposed to address the difficulty of establishing strong lower
bounds in most of these computational settings. The theory of natural proofs [52] shows that if a
computational device can compute pseudorandom functions, then sufficiently constructive techniques
(such as those that have been successful against weaker models) cannot show lower bounds of the form
Nk if k is sufficiently large. This connection has been quite influential, and subsequent articles (see, e. g.,
[41, 7]) have further investigated the limitations of lower bound techniques from this perspective.

The Razborov–Rudich framework suggests the significance of meta-computational problems of a
particular form: those referring to the computational complexity of strings or truth-tables. Our results
describe a striking phenomenon associated to such problems. They show that in several scenarios, if we
could establish slightly stronger lower bounds for them, i. e., lower bounds that marginally improve the
size bounds described in Table 1, then superpolynomial lower bounds for explicit problems would follow.
More specifically, this phenomenon concerns computational problems where the complexity of strings is
measured according to circuit complexity (often referred to as MCSP; see [29]) or Levin’s time-bounded
Kolmogorov complexity [36] (a problem known as MKtP; see [5]).
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Computational Model Unconditional Lower Bounds Reference(s)

Boolean Circuits; w.r.t. P* Circuit[cN], MA/1 * Circuit[Nk] [26, 18]
different forms of explicitness MAEXP * Circuit[poly] [10, 53]

ΣP
2 6⊆ Circuit[Nk] [31]

Formulas over B2 P* B2-Formula[N2−o(1)] [44]

Formulas over U2 P*U2-Formula[N3−o(1)] [20, 58, 17]

Branching programs P* BP[N2−o(1)] [44]

Low-depth threshold circuits P*MAJ◦THR◦THR[N3/2−o(1)] [30]

Depth-d threshold circuits P* TC0
d [N

1+exp(−d)] (wires) [25]

Depth-d circuits with mod gates quasi-NP* ACC0
d [poly] [43]

Table 1: A summary of several state-of-the-art lower bounds in circuit complexity theory. In our notation,
N denotes input length, and C[s] refers to C-circuits of size ≤ s. Establishing stronger lower bounds in
these different models is open (or non-trivial lower bounds for a function in E= DTIME[2O(N)] in the
case of ACC0

d).

MCSP and MKtP are important meta-computational problems with connections to areas such as
learning theory, cryptography, proof complexity, pseudorandomness and circuit complexity. The funda-
mental question of whether MCSP is NP-complete has been the subject of intensive research. We refer
to [4] for a recent survey of work on these problems.

The new results in this paper are part of an emerging theory of hardness magnification showing that
weak lower bounds for some problems imply much stronger lower bounds. Several results of this form
have been obtained in different contexts [56, 6, 37, 42, 46], and we refer to [46] and [15] for further
discussion. In particular, [15] contains the most recent overview of the developements around hardness
magnification. Other forms of hardness magnification are known in settings such as communication
complexity and arithmetic circuit complexity. A recent example phrased in a way that is closer to our
results appears in [13] (see also [22]).

Our hardness magnification results for MCSP and MKtP relate to the Razborov–Rudich framework
of natural proofs in two ways. First, the meta-computational problems for which we show magnification
are closely related to the notion of natural proofs—indeed MCSP is easy on average if and only if natural
proofs exist [21]. Second, our results suggest a possible way to bypass the natural proofs barrier. The
reason is that the natural proofs barrier only applies to lower bound techniques that work for random
functions; our magnification results, on the other hand, exploit specific properties of MCSP and MKtP
that do not hold for random functions. Similar observations about bypassing the natural proofs barrier
using magnification-type results were made in [6, 46].

Our main contributions can be informally described as follows:

(i) We employ new techniques to obtain the first magnification theorem for the worst-case formulation
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of the MCSP problem.1

(ii) Extending [46, Theorem 3], our results establish hardness magnification for a natural meta-
computational problem (MKtP) near the lower bound frontiers in several standard circuit models.
In addition, we identify a computational model where hardness magnification for MKtP lies below
existing lower bounds.

(iii) Crucially, our hardness magnification theorems hold for problems for which it is possible to
establish a variety of non-trivial lower bounds.

We believe these results further highlight the relevance of meta-computational problems in connection
to the main open problems in algorithms and complexity theory (see, e. g., [64, 12] for recent break-
throughs), and strongly indicate that the investigation of weak lower bounds for MKtP and MCSP is a
fundamental research direction.

1.2 Results

In this section, we formally state our results. We also briefly discuss some of our techniques, which
are explained in more detail in the main body of the paper. We defer a more elaborate discussion of some
results to Section 1.3.

Notation. We consider formulas over the bases U2 (fan-in two ANDs and ORs), B2 (all boolean functions
over two input bits), and extended U2-formulas where the input leaves are labelled by literals, constants,
or parity functions over the input bits of arbitrary arity. The corresponding classes of formulas of size
at most s (measured by the number of leaves) will be denoted by U2-Formula[s], B2-Formula[s], and
U2-Formula-⊕[s], respectively. If we do not specify the type of formulas, we are referring to De Morgan
formulas (i. e., formulas over U2). We also consider bounded-depth majority circuits, where each internal
gate computes a boolean-valued majority function (MAJ) of the form ∑i∈S yi ≥? t (the circuit has access
to input literals x1, . . . ,xn,x1, . . . ,xn). We measure the size of such circuits by the number of wires in
the circuit. Depth-d majority circuits of size s will de denoted by MAJ0

d{s}, where d ≥ 1 is fixed. The
choice of braces {} is supposed to emphasize that the size is measured by the number of wires. We
also consider threshold circuits whose internal gates compute threshold functions (THR) of the form
∑i∈S wi · yi ≥? t, for wi, t ∈ R. We count gates in this case, and let TC0

d [s] denote the corresponding class
of circuits. Circuit[s] denotes fan-in two boolean circuits of size s and of unbounded depth (gate types
do not matter in our results: our results hold for every fixed choice of basis for the gates, which can be
assumed throughout the paper). More generally, for a circuit class C, we use C[s] to denote C-circuits
of size ≤ s, where size is measured by number of gates. Finally, BP[s] denotes deterministic branching
programs of size at most s. We refer to standard textbooks (e. g., [27]) for more information about these
boolean devices.

Gap-MKtP and lower bounds for EXP. We use N to denote the input length of an instance of Gap-
MKtP[s1,s2] (see Definition 2.2 below), where we need to distinguish strings of Kt complexity [36] (a

1Independently, Dylan McKay, Cody Murray, and Ryan Williams [40] established a magnification theorem for a worst-case
formulation of MCSP with a completely different proof. We refer to Section 1.2 for more details.
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certain time-bounded variant of Kolmogorov complexity) at most s1(N) from strings of Kt complexity at
least s2(N). It is not hard to see that for constructive bounds s1 < s2, Gap-MKtP[s1,s2] ∈ EXP. Results
from [5] show that Gap-MKtP[Nε ,Nε +5logn] is hard for EXP under efficient non-uniform reductions,
for every 0 < ε < 1.

We establish a hardness magnification theorem for Gap-MKtP. Let n = logN.

Theorem 1.1 (Hardness magnification for MKtP). There is a universal constant c ≥ 1 for which the
following hold. If there exists ε > 0 such that for every small enough β > 0

1. Gap-MKtP[2βn,2βn + cn] /∈ Circuit[N1+ε ], then EXP* Circuit[poly].

2. Gap-MKtP[2βn,2βn + cn] /∈U2-Formula-⊕[N1+ε ], then EXP* Formula[poly].

3. Gap-MKtP[2βn,2βn + cn] /∈ AND-THR-THR-XOR[N1+ε ], then EXP* TC0
2[poly].

4. Gap-MKtP[2βn,2βn + cn] /∈MAJ0
2d′+d+1{N1+(2/d′)+ε}, then EXP*MAJ0

d{poly}.

5. Gap-MKtP[2βn,2βn + cn] /∈ B2-Formula[N2+ε ], then EXP* Formula[poly].

6. Gap-MKtP[2βn,2βn + cn] /∈U2-Formula[N3+ε ], then EXP* Formula[poly].

7. Gap-MKtP[2βn,2βn + cn] /∈ BP[N2+ε ], then EXP* BP[poly].

8. Gap-MKtP[2βn,2βn + cn] /∈ (AC0[6])[N1+ε ], then EXP* AC0[6].

Interestingly, this result shows the existence of a single meta-computational problem that is connected
to several frontiers in complexity theory.

The proof of Theorem 1.1 relies on a refinement of some ideas from [46, Section 3.2]. In fact, item 1
of Theorem 1.1 is a restatement of [46, Theorem 3] and the remaining items follow from an observation
that the original argument scales to weaker circuit classes. For a sketch of the argument and its underlying
techniques, we refer to the discussion in Section 3. We mention that crucial in the proof is the use
of error-correcting codes, and that the complexity of computing these objects using different boolean
devices gives rise to the distinct magnification thresholds observed in Theorem 1.1. The formal proof of
Theorem 1.1 appears in Sections 3.1 and 3.2.

In contrast, we observe the following unconditional lower bounds.

Theorem 1.2 (Strong lower bounds for large parameters). For every ε > 0 there exists δ > 0 for which
the following results hold:

1. Gap-MKtP[2(1−δ )n,2n−1] /∈U2-Formula[N3−ε ].

2. Gap-MKtP[2(1−δ )n,2n−1] /∈ B2-Formula[N2−ε ].

3. Gap-MKtP[2(1−δ )n,2n−1] /∈ BP[N2−ε ].
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The proof of Theorem 1.2 is a simple adaptation of the existing lower bound methods. It relies
on the existence of pseudorandom generators against small formulas and small branching programs by
Impagliazzo, Meka and Zuckerman [24], together with an observation of Allender [3]. The argument
appears in Appendix 5.2.

Note the different regime of parameters for Gap-MKtP[s1,s2] in Theorems 1.1 and 1.2. In order to
magnify a weak lower bound using Theorem 1.1, we need that it holds for s1 = 2o(n) = No(1). The next
result shows that non-trivial unconditional lower bounds can be obtained in this regime.

Theorem 1.3 (A near-quadratic formula lower bound). For every constant 0 < α < 2 there exists C > 1
such that Gap-MKtP[Cn2,2(α/2)n−2] /∈U2-Formula[N2−α ].2

The proof of Theorem 1.3 is a simple adaptation of a lower bound of Hirahara and Santhanam [21,
Section 4] (see also the exposition in [46, Appendix C.1]) employed in the context of MCSP for larger
parameters. A sketch of the argument followed by a proof can be found in Appendix 5.1.

Gap-MCSP and lower bounds for NP. We use N = 2n to denote the input length of an instance of Gap-
MCSP[s1,s2] (see Definition 2.4 below), where one needs to distinguish functions of circuit complexity
at most s1 from functions of circuit complexity at least s2. It is not hard to see that for constructive bounds
s1 < s2, Gap-MCSP[s1,s2] ∈ NP. It is not known if Gap-MCSP[s1,s2] is NP-complete. Recently, [23]
established NP-hardness of several related versions of the MCSP problem. However, note that for
s1 = No(1), Gap-MCSP[s1,s2] is computable in time 2No(1)

, which means that with these parameters the
problem is not NP-hard unless NP is contained in subexponential time.

We establish the following magnification theorem for Gap-MCSP.

Theorem 1.4 (Hardness magnification for MCSP). There is a universal constant c ≥ 1 for which the
following holds. If there exists ε > 0 such that for every small enough β > 0, Gap-MCSP[2βn/cn,2βn] /∈
Circuit[N1+ε ], then NP* Circuit[poly].

MCSP and MKtP are quite different problems. In our results, an important distinction is that applying
a polynomial-time function to an input of MKtP does not substantially increase its Kt complexity (see
Proposition 2.3), but this is not necessarily true in the context of circuit complexity, where the input string
represents an entire truth-table. For this reason, the proof of Theorem 1.4 is completely different from the
proof of Theorem 1.1.

A magnification theorem for a version of MCSP has been obtained already by Oliveira and San-
thanam [46]. For example, they show that superlinear formula lower bounds for the variant of MCSP
denoted (1,1−δ )-MCSP[s] imply NP 6⊆NC1. (1,1−δ )-MCSP[s] is different from the version of MCSP
discussed in the present paper (Gap-MCSP[2βn/cn,2βn]), and refers to the average-case circuit com-
plexity of the input truth table: it asks for distinguishing truth-tables of Boolean functions of circuit
complexity at most s from functions which cannot be (1− δ )-approximated by circuits of size s, for
δ > 0 and s = Nε where ε is sufficiently small. As we discuss below, the existing lower bound methods
are more suitable for proving lower bounds for Gap-MCSP[2βn/cn,2βn] than for (1,1−δ )-MCSP[s].

2The constant C has an exponential dependence on 1/α .
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Theorem 1.4 is our main technical contribution. The argument relies on the notion of anti-checkers.
Roughly speaking, an anti-checker is a bounded collection S of inputs associated with a hard function f
such that any small circuit C differs from f on some input in S. More precisely, it was established in [38]
that any function f : {0,1}n→ {0,1} that requires circuits of size s admits a collection S f containing
O(s) strings that is an anti-checker against circuits of size roughly s/n. Our argument makes crucial
use of anti-checkers, and en route to Theorem 1.4 we give a more constructive proof of their existence.
(While the proof in [38] uses min-max theory, our proof is combinatorial and self-contained.)

We remark that anti-checkers were first employed for hardness magnification in the context of proof
complexity [42]. However, while the existential result from [38] was sufficient in that context, this is not
the case in circuit complexity, and our argument needs to be more sophisticated. For the reader interested
in learning more about hardness magnification in proof complexity, how it relates to meta-computational
problems such as MCSP, and how the new results compare with previous work, we refer to Appendix 6.

The proof of Theorem 1.4 is not difficult given a certain lemma about the construction of anti-checkers
(see Section 4.1). The crucial Anti-Checker Lemma (see Lemma 4.1) says that NP⊆Circuit[poly] implies
the existence of circuits of almost linear size which given the truth table of a Boolean function f print a
corresponding set S f . The circuits provided by the Anti-Checker Lemma simulate the alternate proof
of the existence of anti-checkers, but make the involved argument constructive by using approximate
counting and the assumption NP ⊆ Circuit[poly]. The strategy for proving the Anti-Checker Lemma
is similar to the proof of Sp

2 ⊆ ZPPNP [11] and to the classical ZPPNP learning algorithm from [9]. A
high-level exposition and the complete proof are described in Section 4.3

A remark on kernelization. Implicit in our proof of Theorem 1.4 is a Turing kernelization for the pa-
rameterized version of Gap-MCSP which might be of independent interest – there are nearly-linear sized
circuits which solve any instance of Gap-MCSP with parameter s using oracle access to poly(s)-sized
instances of a fixed language in the Polynomial Hierarchy.

We observe that a simple adaptation of the lower bound of Hirahara and Santhanam [21, Section 4]
yields the following related unconditional lower bound against formulas.

Theorem 1.5. For each 0 < α < 2 there exists d > 1 such that Gap-MCSP[nd , 2(α/2−o(1))n] /∈ U2-
Formula[N2−α ].

Consequently, if one could establish an analogue of Theorem 1.4 for sub-quadratic formulas, then
NP* Formula[poly]. We explain why the argument behind the proof of Theorem 1.4 fails in the case of
formulas in Section 4.2.4 The proof of Theorem 1.5 is similar to the proof of Theorem 1.3, and we sketch
the necessary modifications in Appendix 5.3.

Finally, in Section 4.3 we discuss a certain combinatorial hypothesis (“The Anti-Checker Hypoth-
esis”) connected to the techniques behind the proof of Theorem 1.4. If this hypothesis holds, then

3We stress that the assumption that NP⊆ Circuit[poly] allows several computations to be performed in circuit size O(Nc),
where N is the input length. Note however that our requirement is much more stringent: we need to construct anti-checkers
using circuits of size O(N1+ε ) instead of O(Nc) for some c ∈ N.

4Note that Theorem 1.4 implies lower bounds for a problem in NP. Theorem 1.1 only gives lower bounds in EXP, but its
proof extends to several low-complexity settings.

THEORY OF COMPUTING, Volume 17 (11), 2021, pp. 1–38 7

http://dx.doi.org/10.4086/toc
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NP* Formula[poly]. We observe that the hypothesis does hold in the average-case.

Independent and subsequent work. Independently of the conference version of our paper [45], Dylan
McKay, Cody Murray, and Ryan Williams [40] established a version of Theorem 1.4 that refers to the
standard formulation of MCSP without a gap between positive and negative instances. Their result is
obtained using different techniques, and also extends to circuit classes of limited depth and to various
versions of MKtP. While Theorem 1.4 offers a weaker statement compared to the results from [40],
a more careful analysis of our proof reveals that it survives in the context of weaker computational
models, e. g., in order to show that NP 6⊆ NC1 it is enough to establish lower bounds against almost
superlinear size circuits with a certain structure, a circuit class for which it is possible to prove non-trivial
lower bounds. This is explored in a subsequent paper by Chen, Hirahara, Oliveira, Pich, Rajgopal and
Santhanam [15].

More recently, Lijie Chen, Dylan McKay, Cody Murray and Ryan Williams [16] proved an incompa-
rable magnification theorem, showing that weak lower bounds against sufficiently sparse languages imply
superpolynomial lower bounds for languages computable in nondeterministic time. This result applies to
a large class of problems, but the lower bound implication is weaker than Theorem 1.4. A significant
advantage of Theorem 1.1 compared to these results is that it applies to many circuit classes.

In the most recent work on the topic (already mentioned above), [15] addresses several further
questions raised in the present paper. In particular, [15] disproves “The Anti-Checker Hypothesis" and
explores the potential and limitations of the hardness magnification program by showing that some
magnification theorems are non-naturalizable in the sense that they not only imply strong lower bounds
such as NP 6= P but even the non-existence of natural properties, and by identifying the so called “locality
barrier" which prevents us from proving strong circuit lower bounds by combining the existing weak
lower bounds methods with hardness magnification theorems.

1.3 Discussion

This work is a sequel to an earlier paper of two of the authors [46], in which hardness magnification
was first explored in a systematic way. The results in [46] are for a variety of problems (including
SAT, Vertex Cover and variants of MKtP and MCSP) and models (including formulas, circuits and
sublinear-time algorithms). For each (problem, model) pair considered in [46], it is shown that non-trivial
lower bounds for the problem against the model imply superpolynomial lower bounds for some other
explicit problem.

As discussed in [46], there are two natural interpretations of magnification results. The first, more
optimistic, interpretation is that magnification constitutes a new approach to proving strong lower bounds.
If we are able to replicate the non-trivial circuit lower bounds we can prove against models such as
constant-depth circuits (in the worst case) or formulas (in the average case) for the problems witnessing
the magnification phenomenon, then this would lead to new and powerful lower bounds. There are no
well-understood obstacles to the success of such an approach. In particular, hardness magnification seems
to avoid the natural proofs barrier of Razborov and Rudich [52]. This has been, in fact, formalized in a
subsequent paper [15].

The other, more pessimistic, interpretation of magnification results is that they indicate that circuit
lower bounds might be even harder to achieve than previously thought. Earlier, superpolynomial
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lower bounds seemed to be out of reach, but there was no strong reason to believe that small fixed
polynomial lower bounds or at least barely non-trivial lower bounds are hard to show. Given the belief
that superpolynomial circuit lower bounds for explicit hard problems are hard to show, the magnification
phenomenon suggests that for several natural problems of interest, even non-trivial lower bounds are hard
to show.

The results of [46] have drawbacks which the present work addresses.
For the optimistic interpretation, it would be good to have examples of natural problems for which

some magnification phenomenon holds, and for which we have techniques giving non-trivial lower
bounds. For example, although we have a non trivial lower bound of Hirahara and Santhanam for a
version of MCSP (Theorem 1.5), we do not know how to adapt their method to get a similar lower
bound for (1,1− δ )-MCSP[Nε ]. In this paper, we give magnification results for the Gap-MKtP and
Gap-MCSP problems, for both of which we show that there are non-trivial lower bounds in the model of
Boolean formulas. Thus there is some lower bound technique which works to give a non-trivial result –
the question is “merely” whether it can be strengthened to derive a lower bound beyond the magnification
threshold.

While the pessimistic interpretation might not lead to new lower bounds, it does have the potential of
leading to a better understanding of barriers. From this point of view, [46] is not particularly sensitive to
the specific model being considered. It is clear that some models are easier to prove lower bounds for than
others – indeed we have near-cubic lower bounds in the De Morgan formula model, near-quadratic lower
bounds in the branching program model, and only trivial lower bounds in the Boolean circuit model. Can
magnification be used to give a new perspective on these differences between models?

We provide a positive answer to this question, by giving different magnification thresholds for
different models. What remains mysterious is why known lower bound techniques fall short of proving
lower bounds required to apply magnification. This suggest that there might be limitations of the known
techniques above and beyond those captured by natural proofs. A subsequent paper [15] addresses this
question by identifying such a limitation more formally, the so-called “locality barrier.”

It is worth emphasizing that there are natural problems for which showing lower bounds that are
weaker than the current state-of-the-art size bounds would also imply superpolynomial lower bounds [46].
A representative example presented in [46] concerns the above-mentioned average-case version of MCSP,
where the problem refers to the average-case circuit complexity of the input function. The reason
that result does not imply superpolynomial lower bounds via magnification is that the corresponding
unconditional lower bounds and magnification theorems hold for a different regime of the average-case
complexity parameter.5

Our results and techniques were motivated in part by the desire to address this gap. On the one hand,
it seems to be easier to analyse problems that refer to the worst-case complexity of the input. But on the
other hand, our new results indicate that the shift from average-case to worst-case complexity (in the
description of the problem) often increases the magnification threshold to size bounds that are beyond
existing techniques. As a concrete example, if the formula magnification theorem for the average-case
MCSP problem investigated in [46] could be established for the worst-case variant investigated here,
NP* NC1 would follow via Theorem 1.5. Another glimpse of the subtle transition between worst-case
and average-case complexity and its role in magnification appears in the discussion of the Anti-Checker

5In particular, the lower bounds and magnification theorems from [46] do not hold for the same problems.
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Hypothesis in Section 4.3.
Complementing these results, we identify a computational model that has not received much attention

in the literature, and for which the magnification threshold for Gap-MKtP lies below existing lower
bounds. This corresponds to Theorem 1.4 Item 2, i. e., U2-formulas augmented with parities in the leaves
(our exposition in Section 3 focuses on this model). Note that, by a straightforward simulation, before
breaking the cubic barrier for U2-formulas or the quadratic barrier for B2-formulas, one needs to show
superlinear lower bounds against U2-Formula-⊕. But a recent result of Tal [59] implies exactly that: the
inner product function over N input bits is not in U2-Formula-⊕[N1.99].

This makes this computational model particularly attractive in connection to hardness magnification
and lower bounds. Indeed, it seems “obvious” that Gap-MKtP[2δn,2δn + cn] /∈U2-Formula-⊕[N1.01],
given that such formulas cannot compute the much simpler inner product function, and that standard
formulas require at least near-quadratic size (Theorem 1.3). Our work shows that if this is the case, then
EXP* NC1.

2 Preliminaries

For ` ∈N, we use [`] to denote the set {1, . . . , `}. The length of a string w will be denoted by |w|. Our
logarithms are in base 2, and we use exp(x) to denote ex. We use boldface symbols such as iii and ρρρ to
denote random variables, and xxx ∈R S to denote that xxx is a uniformly random element from a set S. We
often identify n with logN or N with 2n, depending on the context.

For concreteness, we employ a random-access model to formalize uniform algorithms. The details of
the model are not crucial in our results, and only mildly affect the gap parameters s1 and s2. We fix an
efficient universal machine U , and use 〈M〉 to denote the string encoding the algorithm M (with respect to
U). We assume for convenience the following property of this encoding: if an algorithm C is obtained via
the composition of the computations of algorithms A and B, then |〈C〉| ≤ |〈A〉|+ |〈B〉|+O(1). Roughly
speaking, concatenating two codes gives a new code.6

We introduce next the notion of Kt complexity.

Definition 2.1 (Kt Complexity ([36]; see also [3])). For a string x ∈ {0,1}∗, Kt(x) denotes the minimum
of |〈M〉|+ |a|+dlog tM(a)e over pairs (M,a) such that the machine M outputs x when it is given the input
string a. We say that a pair (M,a) witnesses an inequality Kt(x)≤ y if |〈M〉|+ |a|+ dlog tM(a)e ≤ y.

Definition 2.2 (The Gap-MKtP Problem). We consider the promise problem Gap-MKtP[s1,s2], where
s1,s2 : N→ N and s1(N) < s2(N) for all N ∈ N. For each N ≥ 1, Gap-MKtP[s1,s2] is defined by the
following sets of instances:

YESN
def
= {x ∈ {0,1}N | Kt(x)≤ s1(N)}, and

NON
def
= {x ∈ {0,1}N | Kt(x)> s2(N)}.

We will need the following simple result.

6This holds for instance in assembly code with relative jump instructions (i. e., goto instructions where the new line is
encoded relative to the number of the current line).
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Proposition 2.3 (Kt complexity and composition). Let B be an algorithm that runs in time at most TB(N)
over inputs of length N. Then, for every input w ∈ {0,1}N , as N grows we have

Kt(B(w)) ≤ Kt(w)+ log(TB(N))+O(1).

Proof. Let A be a machine and a be a string such that the pair (A,a) witnesses the value Kt(w). Let C be
the composition of machines A and B, i. e., C(y) = B(A(y)). We claim that the pair (C,a) witnesses the
inequality in the conclusion of the proposition. Indeed, since C(a) = B(A(a)) = B(w), we get

Kt(B(w)) ≤ |〈C〉|+ |a|+ dlog tC(a)e
≤ |〈A〉|+ |〈B〉|+O(1)+ |a|+ log(tA(a)+ tB(w))

≤ |〈A〉|+ |a|+ log(tA(a))+ log(tB(w))+ |〈B〉|+O(1)

≤ Kt(w)+ log(TB(N))+O(1),

where we have used that |〈B〉| is constant as N grows.

We also consider a natural formulation of the gap version of the Minimum Circuit Size Problem
(MCSP). The circuit complexity of a boolean function f : {0,1}n→ {0,1} is denoted by Size( f ), i. e.,
Size( f ) is the minimal s such that f is computable by a circuit from Circuit[s]. We use the same notation
to represent the circuit complexity of the function encoded by a string x ∈ {0,1}2n

.

Definition 2.4 (The Gap-MCSP Problem). We consider the promise problem Gap-MCSP[s1,s2], where
s1,s2 : N→N and s1(n)≤ s2(n) for all n ∈N. For each n≥ 1, Gap-MCSP[s1(n),s2(n)] is defined by the
following sets of instances:

YESn
def
= {x ∈ {0,1}2n | Size(x)≤ s1(n)}, and

NOn
def
= {x ∈ {0,1}2n | Size(x)> s2(n)}.

3 Hardness magnification via error-correcting codes

In this section, we prove Theorem 1.1. First, we provide a high-level exposition of the argument.

Proof idea. The result is established in the contrapositive. The idea, which goes back to [46, Theorem
3], is to reduce Gap-MKtP[s1,s2] to a problem in EXP over instances of size poly(s1,s2)� N, and to
invoke the assumed complexity collapse to solve Gap-MKtP using very efficient circuits (or other boolean
devices). First, we apply an error-correcting code (ECC) to the input string w ∈ {0,1}N . Since this can
be done by a uniform polynomial time computation, we are able to show that ECC(w) ∈ {0,1}O(N) is a
string of Kt complexity ` < s2 if w has Kt complexity ≤ s1. On the other hand, using an efficient decoder
for the ECC, we can show that if w has Kt complexity ≥ s2, then any string of Kt complexity > ` differs
from ECC(w) on a constant fraction of coordinates. Let z = ECC(w). Given the gap in the input instances
of Gap-MKtP, our task now is to distinguish strings z that have Kt complexity at most ` from strings that
cannot be approximated by strings of Kt complexity at most `, where s1 < ` < s2.
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We achieve this by using a random projection of the input z to a string y of size roughly `� N. The
intuition is that if z has Kt complexity at most `, then every projection of z also agrees with some string
(i. e., z) of Kt complexity at most `. However, using random sampling and union bounds it is possible to
argue that if z cannot be approximated by a string of Kt complexity at most `, then with high probability
no string of Kt complexity at most ` agrees with the randomly projected coordinates of z. Checking
which case holds when we are given the string y can be done by an exponential time algorithm. Under the
assumption that EXP admits small circuits, we are able to solve this problem in complexity poly(`)� N.
Chosing ` small enough gives us the ‘shrinking’ phenomenon that is so crucial in our proof.

The reduction sketched above requires (1) the computation of an appropriate ECC, and (2) is random-
ized. A careful derandomization and the computation of the ECC in different models of computation
provide the size bounds corresponding to the magnification thresholds appearing in the statement of
Theorem 1.1. For example, in case of Item (2) the derandomized reduction involves N copies of
U2-Formula-⊕ circuits (with ⊕ gates at the bottom computing the ECC and formulas of size poly(`)
above them) of size Nε , which yields the total size N1+ε . The remaining items are obtained by analysing
the specific computational models in question. We leave the details of this case analysis to the actual proof.

The proof idea above comes from [46]. We, however, start with a detailed proof of Item (2), which
covers the more interesting scenario of formulas with parity leaves and includes the observation that the
argument from [46] scales to weaker circuit classes. Intuitively, this is because error-correcting codes can
be computed efficiently by weak computational models. We then discuss how a simple modification of
the argument together with known results imply the other cases.

3.1 Proof of Theorem 1.1 Case 2 (magnification for formulas with parities)

We will need the following explicit construction.

Theorem 3.1 (Explicit linear error-correcting codes (see [28, 54])). There exists a sequence {EN}N∈N of
error-correcting codes EN : {0,1}N →{0,1}M(N) with the following properties:

• EN(x) can be computed by a uniform deterministic algorithm running in time poly(N).

• M(N) = b ·N for a fixed b≥ 1.

• There exists a constant δ > 0 such that any codeword EN(x) ∈ {0,1}M(N) that is corrupted on at
most a δ -fraction of coordinates can be uniquely decoded to x by a uniform deterministic algorithm
D running in time poly(M(N)).

• Each output bit is computed by a parity function: for each input length N ≥ 1 and for each
coordinate i ∈ [M(N)], there exists a set SN,i ⊆ [N] such that for every x ∈ {0,1}N ,

EN(x)i =
⊕
j∈SN,i

x j.

We proceed with the proof of Theorem 1.1 Part (2). We establish the contrapositive. Assume that
EXP⊆ Formula[poly], and recall that N = 2n. For any ε > 0, we prove that Gap-MKtP[2βn,2βn + cn] ∈
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U2-Formula-⊕[N1+ε ] for a sufficiently small β > 0 and a universal choice of the constant c. The value of
c will be specified later in the proof (see Claim 3.3 below).

Let EN : {0,1}N →{0,1}M be the error-correcting code granted by Theorem 3.1, where M(N) = bN.
Given an instance w ∈ {0,1}N of Gap-MKtP[2βn,2βn + cn], in order to contruct a formula for Gap-
MKtP[2βn,2βn + cn] we first apply EN to w ∈ {0,1}N to get z = EN(w) ∈ {0,1}M.

Claim 3.2. There exists c0 ≥ 1 such that for every large enough N the following holds. If Kt(w)≤ 2βn,
then Kt(z)≤ 2βn + c0n.

Proof. The claim follows immediately from the upper bound on Kt(w), the definition of z = EN(w), the
running time of EN , and Proposition 2.3.

Claim 3.3. For each c1 > c0 there exists c > c1 such that for every large enough N the following holds.
If Kt(w) > 2βn + cn, then Kt(z′) > 2βn + c1n for any z′ ∈ {0,1}M that disagrees with z on at most a
δ -fraction of coordinates.

Proof. Suppose that a string z′ ∈ {0,1}M disagrees with z on at most a δ -fraction of coordinates, and that
Kt(z′)≤ 2βn + c1n for some c1 > c0. We give an upper bound on the Kt complexity of w by combining
a description of z′ with the decoder D provided by Theorem 3.1. In more detail, assume the pair (F,a)
witnesses Kt(z′). Let B be the machine that first applies the machine F to a (producing z′), then D to z′. It
follows from Theorem 3.1 that B(a) = D(F(a)) = D(z′) = w. Similarly to the proof of Proposition 2.3,
we also get

Kt(w) ≤ |〈B〉|+ |a|+ dlog tB(a)e
≤ |〈F〉|+ |〈D〉|+O(1)+ |a|+ log(tF(a)+ tD(z′))

≤ Kt(z′)+ log(tD(z′))+O(1)

≤ (2βn + c1n)+O(n)+O(1)

≤ 2βn + cn,

if n is large enough and we choose c sufficiently large.

Next we define an auxiliary language L ∈ EXP, efficiently reduce Gap-MKtP to L, and use the
assumption that EXP has polynomial size formulas to obtain almost-linear size formulas with parities at
the bottom. Roughly speaking, we are able to obtain a formula of non-trivial size for Gap-MKtP because
our reduction maps input instances of length N to instances of L of length No(1) (the o(1) term is captured
by the parameter β using n = logN). As we will see shortly, the reduction is randomized. In order to get
the final U2-formula-⊕ computing Gap-MKtP, the argument is derandomized in a straightforward but
careful way. More details follow.

An input string y encoding a tuple (a,1b,(i1,α1), . . . ,(ir,αr)) belongs to L (where a and b are positive
integers, a is encoded in binary, and α j ∈ {0,1}) if each i j (for 1 ≤ j ≤ r) is a string of length dlogae
and there is a string z of length a such that Kt(z)≤ b and for each index j we have zi j = α j.

Claim 3.4. L ∈ EXP.
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Proof. L is decidable in exponential time as we can exhaustively search all strings of Kt complexity at
most b and length exactly a and check if there is one which has the specified values at the corresponding
bit positions. Indeed, using the definition of Kt complexity and an efficient universal machine, a list
containing all such strings can be generated in time poly(2b,a). In turn, checking that a string of length a
satisfies the requirement takes time at most exponential in the total input length, since each index i j is a
string of length dlogae.

Since EXP⊆ Formula[poly] by assumption, L has polynomial-size formulas. Assume without loss
of generality that L has formulas of size O(`k) for some constant k, where ` is its total input length. We
choose β = ε/100k.

We are ready to describe a low-complexity reduction from Gap-MKtP[2βn,2βn +cn] to L (which will
form a part of the final formula for Gap-MKtP). First, we use the error-correcting code to compute z
from w, as described before Claim 3.2. Then we apply the following sampling procedure. We sample
uniformly and independently r = 22βn indices iii111, . . . , iiirrr ∈R [M], where M = bN. We then form the string
y encoding the tuple

(M,12βn+c1n,(iii111,ziii111), . . . ,(iiirrr,ziiirrr)),

where c1 > c0 ≥ 1 is provided by Claim 3.3. Note that this is a string of length `(N)≤ Nε/10k.

Claim 3.5. The following implications hold:

(a) If w ∈ {0,1}N is a positive instance of Gap-MKtP[2βn,2βn + cn], then y ∈ L with probability 1.

(b) If w ∈ {0,1}N is a negative instance of Gap-MKtP[2βn,2βn + cn], then y /∈ L with probability
> 1/2.

Proof. If w is a YES instance, we have by Claim 3.2 that Kt(z)≤ 2βn + c0n≤ 2βn + c1n. In this case, z
is a string of length M that has the specified values at the specified bit positions, regardless of the random
positions that are sampled by the reduction. Consequently, y ∈ L with probability 1.

For the claim about NO instances, as previously established in Claim 3.3, we have that Kt(z′) >
2βn+c1n for any z′ such that |z′|= |z|= M and Priii∈R[M][z′iii 6= ziii]≤ δ . Now consider any string z′′ of length
M such that Kt(z′′) ≤ 2βn + c1n. For such a string z′′, for each j ∈ [r], the probability that the random
projection satisfies z′′iii jjj

= ziii jjj (where iii jjj ∈R [M]) is at most 1−δ . Hence the probability that z′′ agrees with

z at all the specified bit positions is at most (1− δ )r ≤ exp(−δ r) ≤ exp(−δ22βn). By a union bound
over all strings z′′ with Kt(z′′)≤ 2βn +c1n, the probability that there exists a string z′′ with Kt complexity
at most 2βn + c1n which is consistent with the values at the specified bit positions is exponentially small
in n. Hence with high probability y /∈ L.

To sum up, there is a randomized reduction from Gap-MKtP[2βn,2βn +cn] over inputs of length N to
instances of L of length `(N)≤ Nε/10k. Now let {F̀ (N)}N≥1 be a sequence of U2-formulas of size O(`k)
for L. Our randomized formulas GGG(·) for Gap-MKtP compute as follows.

1. GGG(w) =
∧N

j=1 GGG( j)(w), where each GGG( j) is an independent copy.
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2. Each GGG( j)(w) is a randomized formula of the form G( j)(w, iii111, . . . , iiirrr) that first computes z from w, then
computes y from z using the (random) input indices iii111, . . . , iiirrr ∈ {0,1}logM, and finally applies F̀ to y.

It follows from Claim 3.5 using the independence of each GGG( j) that

Pr[GGG(w) is incorrect ] < 2−N ,

where the probability is taken over the choice of the random input of G. Consequently, by a union bound
there is a fixed choice γ ∈ {0,1}∗ of the randomness of G (corresponding to the positions of the different
random projections) such that the deterministic formula Gγ obtained from G and γ is correct on every
input string w.

Claim 3.6. Each deterministic sub-formula G( j)
γ (w) can be computed by a U2-formula extended with

parities at the leaves of size at most O(`(N)k)≤ Nε/2.

Proof. Note that each bit of z can be computed from the input string w using an appropriate parity
function (as described in Theorem 3.1). We argue that the leaves of G( j)

γ are precisely the leaves of the

U2-formula F̀ replaced by appropriate literals, constants, or parities. Recall that G( j)
γ applies F̀ to the

string y obtained from z. However, since γ is fixed, the positions of z that are projected in order to compute
y are also fixed, and so are the substrings of y describing the corresponding positions. Consequently, the
size (i. e., number of leaves) of each G( j)

γ is at most the size of F̀ , which proves the claim.

It follows from this claim that Gγ(w) can be computed by a formula containing at most N1+ε leaves,
and hence Gap-MKtP[2βn,2βn + cn] ∈U2-Formula-⊕[N1+ε ]. (Observe that we have used in a crucial
way that the derandomized sub-formulas do not need to compute address functions to generate y from z.)
This completes the proof of Theorem 1.1 Part (2).

3.2 Completing the proof of Theorem 1.1

In this section, we discuss how the argument presented in Section 3.1 can be adapted to establish the
remaining items of Theorem 1.1.

First, note that Items (5) and (6) immediately follow from Item (2). This is because a parity gate
over at most N input variables can be computed by B2-formulas of size O(N) and by U2-formulas of
size O(N2)7. Consequently, using that formula size is measured with respect to the number of leaves,
we immediately get U2-Formula-⊕[s(N)] ⊆ B2-Formula[s(N) ·O(N)] and U2-Formula-⊕[s(N)] ⊆ U2-
Formula[s(N) ·O(N2)].

In order to get Item (1), it is sufficient to compute an error-correcting code as in Theorem 3.1 using
circuits of (almost) linear size. In other words, we need the entire codeword (and not just each output bit)
to be computable from the input message using a circuit of size O(N). The existence of such codes is
well-known [54, 55]. The rest of the reduction produces an additive overhead in circuit size of at most
N1+ε gates. For more details see [46].

7To see that, note that PARITY(x1, . . . ,xn) = (PARITY(x1, . . . ,xb n
2 c) ∧ ¬PARITY(xb n

2 c+1, . . . ,xn)) ∨
(¬PARITY(x1, . . . ,xb n

2 c) ∧ PARITY(xb n
2 c+1, . . . ,xn)). If we recursively apply this formula, we obtain a formula of

depth 2logn+O(1). Consequently, the resulting formula for PARITY(x1, . . . ,xn) has size O(n2).
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To establish Item (4), we use the following construction from [61].

Theorem 3.7 (Computing ECCs in parallel using majorities and few wires [61])). For every depth
d′ ≥ 1 there are constants δ (d′)> 0 and b(d′)≥ 1 and a sequence {EN}N∈N of error-correcting codes
EN : {0,1}N →{0,1}M with the following properties:

• EN(x) can be computed by a uniform deterministic algorithm running in time poly(N).

• M(N) = b ·N.

• Any codeword EN(x) ∈ {0,1}M that is corrupted on at most a δ -fraction of coordinates can be
uniquely decoded to x by a uniform deterministic algorithm D running in time poly(M).8

• EN(x) ∈ {0,1}M can be computed by a multi-output circuit from MAJ0
2d′{O(N1+(2/d′))}, where

circuit size is measured by number of wires.

Following the steps of the reduction described in Section 3.1, under the assumption that EXP ⊆
MAJ0

d{poly} the final depth of the circuit solving Gap-MKtP is 2d′+d +1, where the terms in this sum
correspond respectively to the computation of the error-correcting code (for a choice of d′ ≥ 1), each
(circuit) G( j)

α , and the topmost AND gate in Gα (constant bits can be produced in depth 1 from input
literals). Similarly, the overall size (number of wires) of the circuit is O(N1+(2/d′))+O(N1+ε)+O(N)≤
N1+(2/d′)+ε .

Item (3) is established analogously to Item (2): Assuming EXP ⊆ TC0
2[poly], we conclude that

G( j)
γ (w) can be computed by a THR-THR-XOR circuit of size at most Nε/2 (counted as a number of

gates) and Gγ(w) by an AND-THR-THR-XOR circuit of size at most N1+ε . Item (8) uses that parity
gates can be simulated using O(1) mod 6 gates. That is, assuming EXP ⊆ AC0[6], we conclude that
G( j)

γ (w) can be computed by an AC0[6] circuit of size at most Nε/2 and Gγ(w) by an AC0[6] circuit of
size at most N1+ε .

Finally, we deal with case (7), which refers to branching program complexity. First, note that the parity
of n bits can be computed by a branching program of size O(n). In addition, if f (x) = g(h1(x), . . . ,hk(x)),
each hi has a branching program of size s, and g has a branching program of size t, then f has a branching
program of size ` = O(t · s). Finally, a conjunction of N branching programs of size ` has branching
program size at most O(N · `). Combining these facts in the natural way yields case (7). This completes
the proof of all cases in Theorem 1.1.

8This claim does not appear explicitly in [61], but it is an immediate consequence of their construction via well-known
results on the decodability of direct product codes (see, e. g., [39] for more information about such codes). In more detail, the
code provided by [60, Proposition 6.5] (full version of [61]) is obtained by constantly many compositions of the following
product operation on codes, which decreases the distance but improves the parallel complexity of computing the code. Given a
code E : {0,1}n→{0,1}` of relative distance δ , we define a new code E ′ : {0,1}n2 →{0,1}`2

of relative distance δ ′ = δ 2 as
follows. We view a message M ∈ {0,1}n×n as a square matrix, apply E to each row of M to obtain a new matrix M1 ∈ {0,1}n×`,
then apply E again to each column of M1 to obtain a codeword M2 ∈ {0,1}`×`. Note that, given a corrupted codeword M̃, to
recover the (i, j)-bit of the original message M it is sufficient to recover a (1−δ )-fraction of the entries of the i-th row of the
intermediate matrix. In turn, this can be achieved if at least a (1−δ )-fraction of the columns of M̃ are corrupted on less than a
δ -fraction of entries (which must happen because we assumed a smaller distance δ ′ = δ 2). Using the obvious 2-step decoding
procedure for E ′, it is not hard to see that E ′ is efficiently decodable if E is efficiently decodable.
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4 Hardness magnification via anti-checkers

4.1 Proof of Theorem 1.4 (magnification for MCSP)

In this section, we derive Theorem 1.4 from Lemma 4.1, whose proof appears in Section 4.2.
Informally, an anti-checker (see [38]) for a function f is a multi-set of input strings such that any circuit
of bounded size that does not compute f is incorrect on at least one of these strings.9

Lemma 4.1 (Anti-Checker Lemma). If NP ⊆ Circuit[poly] there is a constant k ∈ N for which the
following hold. For every sufficiently small β > 0, there is a circuit C of size ≤ 2n+kβn that when given
as input a truth-table tt( f ) ∈ {0,1}N , where f : {0,1}n→ {0,1}, outputs t = 210βn strings y1, . . . ,yt ∈
{0,1}n such that if f /∈ Circuit[2βn] then every circuit of size ≤ s where s = 2βn/10n fails to compute f
on at least one of these strings.

The Anti-Checker Lemma is a powerful tool that might be of independent interest. It says that
anti-checkers of bounded size for functions requiring circuits of size 2o(n) can be produced in time that
is almost-linear in the size of the function (viewed as a string), under the assumption that circuit lower
bounds do not hold.10

Proof of Theorem 1.4. Assume that NP⊆ Circuit[poly]. We prove that for every given ε > 0 there exists
a small enough β > 0 such that Gap-MCSP[2βn/10n,2βn] ∈ Circuit[N1+ε ].

We consider the problem Succinct-MCSP. Its input instances are of the form

〈1n,1s,1t ,(x1,b1), . . . ,(xt ,bt)〉,

where xi ∈ {0,1}n and bi ∈ {0,1}, i ∈ [t]. Note that each instance can be encoded by a string of length
exactly m = n+1+ s+1+ t +1+ t · (n+1). An input string is a positive instance if and only if it is in
the appropriate format and there exists a circuit D over n input variables and of size at most s such that
D(xi) = bi for all i ∈ [t]. Note that the problem is in NP as a function of its total input length m. Under
the assumption that NP is easy for non-uniform circuits, there exists ` ∈N such that Succinct-MCSP can
be solved by circuits Em of size m` on every large enough input length m.

Take β = ε/(100 · ` · k), where k is the constant from Lemma 4.1. In order to construct a circuit for
Gap-MCSP, first we reduce this problem to an instance of Succinct-MCSP of length m using Lemma 4.1,
then we invoke the ml-sized circuit for this problem. More precisely, on an input f : {0,1}n→ {0,1},
we use the circuit C (as in Lemma 4.1) to produce a list of strings y1, . . . ,yt ∈ {0,1}n, generate from
this list and f the input instance z = 〈1n,1s,1t ,((y1, f (y1)), . . . ,(yt , f (yt))〉, for parameters s = 2βn/10n,
t = 210βn, m = poly(n) ·210βn, and output Em(z).

Correctness follows immediately from Lemma 4.1 and our choice of parameters. Indeed, if f ∈
Circuit[2βn/10n] then no matter the choice of y1, . . . ,yt the circuit Em accepts z thanks to our choice of
s = 2βn/10n. On the other hand, when f /∈ Circuit[2βn] then by Lemma 4.1 every circuit of size s fails
on some string from the list, and consequently Em(z) = 0.

9Lipton and Young [38] discuss several versions of the notion of ‘anti-checkers’. The main version of anti-checkers they
work with is defined as a multiset of inputs such that each small circuit fails on a significant fraction of inputs. In contrast, our
anti-checkers are weaker—it suffices that each small circuit fails on at least one input from the set.

10We have made no attempt to optimize the constants in Lemma 4.1.
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We give an upper bound on the total circuit size using the choice of β . Circuit C has size at most
2n+kβn ≤ N1+ε/3. In addition, producing the input z can be done from f and y1, . . . ,yt by a circuit of
size at most O(t ·N)≤ N1+ε/3, since each address function can be computed in linear size O(N) (see,
e. g., [63]). Finally, Em has size at most m` ≤ N1+ε/3. Overall, it follows that Gap-MCSP[2βn/10n,2βn]
is computable by circuits of size N1+ε .

4.2 Proof of Lemma 4.1 (Anti-Checker Lemma)

This section is dedicated to the proof of Lemma 4.1. This completes the proof of Theorem 1.4. We
start with a high-level exposition of the argument.

Proof idea. We take β → 0, for simplicity of the exposition. In principle, the challenge is to construct the
list of strings from the description of f using a circuit of size N1+o(1), given that the existence of such
strings is guaranteed by [38]. But it is not clear how to use this existential result and the assumption that
NP has polynomial size circuits to construct almost-linear size circuits for this task. In order to achieve
this, we use a self-contained argument that produces the strings one by one until very few circuits of
bounded size are consistent with the values of f on the partial list of strings. We then find polynomially
many (in n) additional strings that eliminate the remaining circuits, completing the list of strings.11

To produce the i-th string yi ∈ {0,1}n given y1, . . . ,yi−1 ∈ {0,1}n and f , we estimate the number of
circuits of size ≤ 2βn/10n that agree with f over all strings in {y1, . . . ,yi}. We show that some string yi

will reduce the number of consistent circuits from the previous round by a factor of (roughly) 1−1/n
as long as there are at least (roughly) n2 surviving circuits (this is a combinatorial existential proof that
relies on the lower bound on the circuit complexity of f ). In fact, as discussed below, we will be able to
find such string yi efficiently. This means that after 2O(βn) = No(1) rounds we will reduce the fraction of
consistent circuits of size ≤ 2βn/10n to (1−1/n)No(1) ≤ 1/eNo(1)/n. That is, we will show that at most
2O(βn) = No(1) rounds suffice to produce the required set of strings (modulo handling the few surviving
circuits). The existence of a good string yi is at the heart of our argument, and we defer the exposition of
this result to the formal proof.

In order to find yi efficiently, in each round, we exhaustively check each of the N candidate strings
yi. As we will explain soon, estimating the number of surviving circuits after picking a new candidate
string yi can be done by a circuit of size No(1) given access to y1, . . . ,yi and to the corresponding bits
f (y1), . . . , f (yi).12 In summary, there are No(1) rounds, and in each one of them we can find a good string
yi using a circuit of size N1+o(1). We remark that it will also be possible to produce the additional strings
in circuit complexity No(1), so that the complete list y1, . . . ,yt can be computed from f by a circuit of size
N1+o(1).

It remains to explain how to fix a good string in each round which could be, in principle, an in-
feasible task. We simply pick the most promising string, using that we can give an upper bound on
the complexity of estimating the number of surviving circuits. The latter relies on the assumed in-
clusion NP ⊆ Circuit[poly]. Indeed, from this assumption it follows that the polynomial hierarchy

11In particular, our argument implies the worst-case version of the anti-checker result from [38] with slightly different
parameters. Lipton and Young [38] establish the existence of a stronger version of anticheckers defined as a multiset of inputs
such that every small circuit fails on a big fraction of inputs from the multiset.

12In each round we will generate not only yi but also f (yi) by a circuit of size N1+o(1).
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PH⊆ Circuit[poly], and it is known that relative approximate counting can be done in the polynomial
hierarchy. In our formal proof, we take a slightly more direct route to compute the relative approximations.
Crucially, as described in the paragraph above, the input length of each sub-problem that we need to
solve (in order to estimate the number of surviving circuits) is ≤ No(1) (using that i is at most No(1)), so a
polynomial overhead will not be an issue when solving a sub-task of input length No(1). This completes
the sketch of the proof.

Comparison to Bshouty et al. [9]. A reviewer pointed out to us that the algorithm from our proof is
similar to the classical ZPPNP learning algorithm from [9] with an extra property that the queries to the
NP oracle have small fan-in. In more detail, Bshouty et al. show that it is possible to learn efficiently
circuits of size s with the equivalence queries. Their algorithm proceeds in rounds by searching for strings
y1, . . . ,yi so that in each round i it finds a new string yi significantly reducing the number of functions
computable by circuits of size s and consistent with the target function restricted to y1, . . . ,yi−1. The
string yi is obtained as a response to the equivalence query on a properly designed concept corresponding
to the restriction of the target function to y1, . . . ,yi−1. Our algorithm proceeds in the same way, except
that we cannot use equivalence queries. (If the target function was, e. g., SAT it would be possible to
simulate equivalence queries with NP oracles but this is not our case.) Instead of using equivalence
queries, we go through all N possible candidate strings y and select the right string using approximate
counting. The main point is that the oracle queries needed to perform the approximate counting represent
predicates with inputs of size No(1). This allows us to get in the end a very efficient algorithm. Our proof
differs slightly from Bshouty et al. also in the proof of the existence of a suitable string yi, which reduces
the number of consistent functions, see Lemma 4.7.

We proceed with a formal proof of Lemma 4.1. Let R be a polynomial-time relation, where R is a
subset of

⋃
m{0,1}m×{0,1}q(m) for some polynomial q. For every x, we use R#(x) to denote the set

|{y ∈ {0,1}q(|x|) : (x,y) ∈ R}|. A randomized algorithm ΠΠΠ is called an (ε,δ )-approximator for R if for
every input x it holds that

Pr
[∣∣ΠΠΠ(x)−R#(x)

∣∣ ≥ ε(|x|) ·R#(x)
]
≤ δ (|x|).

Theorem 4.2 (Relative approximate counting in BPPNP ([57]; see, e. g., [19, Section 6.2.2])). For every
polynomial-time relation R and every polynomial p, there exists a probabilistic polynomial-time algorithm
AAA with access to a SAT oracle that is an (1/p(m),2−p(m))-approximator for R over inputs x of length m.

Corollary 4.3. Assume NP⊆ Circuit[poly]. For every polynomial-time relation R and for each m≥ 1,
there is a multi-output circuit CR : {0,1}m→ {0,1}poly(m) of polynomial size such that on every input
x ∈ {0,1}m,

(1−1/m2) ·R#(x) ≤ CR(x) ≤ (1+1/m2) ·R#(x).

Proof. This follows from Theorem 4.2 (using p(m) = m2) by non-uniformly fixing the randomness of
the algorithm, replacing the SAT oracle using the assumption that NP has small circuits, and translating
the resulting deterministic algorithm into a boolean circuit.

We define a relation Q. The first input x is of the form 〈1n,1s,1i,1t−i,(z1,b1), . . . ,(zi,bi),1(t−i)(n+1)〉,
where z j ∈ {0,1}n and b j ∈ {0,1} for 1≤ j≤ i≤ t = 210βn (t is used here to pad the input appropriately).
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The second input is a string w of length m1/5 (for m = |x|) that is interpreted as a boolean circuit Cw over
n input variables and of size at most s. We let (x,w) ∈ Q if and only if Cw(z j) = b j for all j ∈ [i]. Note
that Q is a polynomial-time relation.

We employ circuits obtained from Corollary 4.3 using parameters s = 2βn/10n and 1≤ i≤ t, where
t = 210βn. The following result is immediate from Corollary 4.3 given that for our choice of parameters
m = poly(2βn).

Proposition 4.4 (Circuits for approximate counting). There is a constant k1 ∈ N for which the following
holds. For every n≥ 1, let s = 2βn/10n, t = 210βn, 1≤ i≤ t. Then there is a multi-output circuit Cn,i of
size ≤ 2k1βn that outputs ≤ 2k1βn bits such that on every input a = ((z1,b1), . . . ,(zi,bi)) ∈ {0,1}i·(n+1),

(1−1/n10) ·Q#(x) ≤ Cn,i(a) ≤ (1+1/n10) ·Q#(x),

where x = x(a) = 〈1n,1s,1i,1t−i,(z1,b1), . . . ,(zi,bi),1(t−i)(n+1)〉.

The next step is to guarantee that once just a few circuits remain consistent with f over our partial list
of strings (as described in the proof sketch above), we can efficiently find a small number of strings to
eliminate all of them.

Lemma 4.5 (Listing the remaining circuits). Assume NP ⊆ Circuit[poly]. There exists a constant
k2 ∈ N such that for each sufficiently big n the following holds. Let a = ((z1,b1), . . . ,(zt ′ ,bt ′)), where
t ′ ≤ t = 210βn, and x = x(a) be the corresponding input of Q. There is a circuit Dn,t ′ of size ≤ 2k2βn such
that if Q#(x) ≤ n3, then Dn,t ′(a) outputs a string describing all circuits of size s = 2βn/10n consistent
with the partial list a.

Proof. It follows from NP⊆Circuit[poly] using a standard argument that PH⊆Circuit[poly]. In addition,
it is not hard to define a relation in PH (using a padded input containing the string 1t) that checks if a given
input a satisfies Q#(x(a))≤ n3. Consequently, checking if a string λ describes a list of circuits of size s
consistent with a can be done by a circuit of size at most poly(t). Using again that NP⊆ Circuit[poly]
and a self-reduction, we obtain circuits Dn,t ′ as in the statement of the lemma. More precisely, Dn,t ′ keeps
generating new circuits of size s consistent with a until it generates all of them. Since generating each bit
of each new circuit can be done by solving a task in PH and checking if we have generated already all
such circuits is in PH as well, this proves the lemma.

Lemma 4.6 (Completing the list of strings). There is a constant k3 ∈ N for which the following holds.
For every n≥ 1 there is a circuit En of size ≤ 2n+k3βn that given as an input a truth-table f ∈ {0,1}2n

and a string w ∈ {0,1}2βn
describing a circuit Cw of size s≤ 2βn/10n that does not compute f , En( f ,w)

outputs a string y such that C(y) 6= f (y).

Proof. First, En evaluates Cw on every string z ∈ {0,1}n. This can be easily done by a circuit of size
2n ·poly(|w|) under a reasonable encoding of the circuit Cw. Then En inspects one-by-one each tuple
Cw(z), fz and outputs the first string where Cw and f differ. Note that a circuit of size ≤ 2n ·poly(|w|) can
print this string from the truth-table of f and Cw. It follows that the overall complexity of En is 2n+k3βn

for some constant k3.
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The previously established results will allow us to find in each round a string yi that significantly
reduces the number of remaining circuits (while at least one such string exists), and then to complete the
list so that no circuit of bounded size is consistent with all strings in the final list. Each yi will be found
by going over all candidates and using Proposition 4.4 or Lemma 4.5 and Lemma 4.6 to pick the right
one. We show next that if f is hard and a reasonable number of circuits of bounded size are consistent
with the current list of strings, then a good string yi exists.

For convenience, we introduce a function to capture the fraction of strings encoding circuits that are
consistent with a set of inputs and their corresponding labels. Given a = ((z1,b1), . . . ,(zi,bi)), let x = x(a)
be the corresponding input to Q under our choice of parameters. Furthermore, let m = |x|, and recall that
Q⊆

⋃
m≥1{0,1}m×{0,1}m1/5

. We assume without loss of generality (using appropriate padding) that
the encoding of x has a fixed length m = m(n) and note that m will be actually of size ≤ 211βn, which will
be useful when giving upper bounds on the number of necessary rounds. We let φ(a) ∈ [0,1] denote the
ratio Q#(x(a))/2m1/5

. (Thus in our formal argument we count circuits using their descriptions as binary
strings.)

Lemma 4.7 (Existence of a good string yi). For every integer i≥ 1 and for every z1, . . . ,zi−1 ∈ {0,1}n,
let a = ((z1, f (z1)), . . . ,(zi−1, f (zi−1))). If

f /∈ Circuit[2βn] and Q#(x(a))≥ 4n2,

then there is some string yi ∈ {0,1}n such that if a′ denotes the sequence a augmented with (yi, f (yi)),
then

φ(a′) ≤ φ(a) · (1−1/2n).

Proof. The argument is inspired by a combinatorial principle discussed in [33]. An alternative approach
can be found in [9].13

Consider the tuple a and the string x = x(a) as in the statement of the lemma. Moreover, let Q(x) =
{w ∈ {0,1}m1/5

: (x,w) ∈ Q}. For convenience, let r = |Q(x)| = Q#(x) ≥ 4n2, using our assumption.
Define an auxiliary undirected bipartite graph G = (L,R,E) as follows. Set L = {0,1}n, R =

(Q(x)
n

)
, and

(y,{w1, . . . ,wn}) ∈ E(G) if and only if for ≤ n/2 of the circuits Cwi we have f (y) =Cwi(y).
Note that for any right vertex v = (w1, . . . ,wn) ∈ R there is a left vertex y ∈ L such that (y,v) ∈ E. If

not, then D =Majorityn(Cw1(x), . . . ,Cwn(x)) is a circuit that computes f on every input string y. The size
of D is at most n · (2βn/10n)+5n≤ 2βn, using the definition of Q and that the majority function can be
computed (with room to spare) by a circuit of size at most 5n [63]. This contradicts the hardness of f .

By an averaging argument, there is a left vertex y∗ that is connected to at least |R|/|L| =
(r

n

)
/2n

vertices in R. We show below (Claim 4.8) that for at least r/2n strings w∈Q(x), the corresponding circuit
Cw satisfies Cw(y∗) 6= f (y∗). This implies that by taking y∗ as the string yi described in the statement of
the lemma, we get Q#(x(a′))≤ r− r/2n = r(1−1/2n), and consequently

φ(a′) =
Q#(x(a′))

2m1/5 ≤ r(1−1/2n)
2m1/5 =

Q#(x(a)) · (1−1/2n)
2m1/5 = φ(a) · (1−1/2n).

13The proof from [9] was pointed out to us by a reviewer. It is conceptually simpler and suffices to prove essentially the same
result. Informally, the proof proceeds in the following way: randomly choose O(n) circuits of size s = 2βn/O(n), and let C be
their majority, so C is of size 2βn. With high probability, for every input x at least 1/3 of the consistent circuits agree with C.
But because f is hard for the size of C there is a string yi on which C fails and hence 1/3 of the consistent circuits fail. This
shrinks the number of the remaining consistent circuits by a constant fraction (instead of 1−1/2n).
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Claim 4.8. Let y∗ ∈ L be a left-vertex connected to at least
(r

n

)
·2−n right-vertices in R, where r ≥ 4n2

and n is sufficiently large. Then, for at least r/2n distinct strings w ∈ Q(x), we have Cw(y∗) 6= f (y∗).

Proof. The claim follows using a standard counting argument. If the conclusion were false, the vertex y∗

would be adjacent to strictly fewer than

n/2

∑
j=0

(
r/2n
n
2 + j

)
·
(

r
n
2 − j

)
≤
(

r
n

)
·2−n (see upper bound below)

vertices in R, which is a contradiction. (For simplicity we made the assumption that n is even and r/2n is
an integer.) It remains to verify this inequality, which can be done using some careful estimates. First,
note that

n/2

∑
j=0

(
r/2n
n
2 + j

)(
r

n
2 − j

)
≤ ∑

j=0,..., n
2−1

rn/(2n)
n
2+ j

(n
2 + j)!(n

2 − j)!
+

rn

n!(2n)n (using
(

n
k

)
≤ nk

k!
)

≤ ∑
j=0,..., n

2−1

enrn/(2n)
n
2+ j

e2(n
2 + j)

n
2+ j(n

2 − j)
n
2− j +

enrn

enn(2n)n (since e
(n

e

)n
≤ n!)

≤ ∑
j=0,..., n

2−1

enrn/(2n)
n
2

e2(n
2)

j(n
2 + j)

n
2 (n

2 − j)
n
2
+

enrn

enn(2n)n (∗)

By considering the cases j < n
4 and n

2 > j ≥ n
4 , we get (n

2)
j((n

2)
2− j2)

n
2 ≥ (n/8)3n/4, so

(∗) ≤ ∑
j=0,..., n

2−1

enrn

e2(n/8)3n/4(2n)n/2 +
enrn

enn(2n)n

≤ nenrn

e2(n/8)3n/4(2n)n/2 ≤
√

2πrn

e2n1/2(2n)n ≤
√

2πrrr1/2

e2(r−n)r−n+1/2nn+1/2 ·
1
2n

≤
(

r
n

)
/2n,

where n is assumed to be sufficiently large, r > n, and the last inequality makes use of Stirling’s
approximation

√
2π(n

e )
nn1/2 ≤ n!≤ e(n

e )
nn1/2. This completes the proof of Claim 4.8.

This completes the proof of Lemma 4.7.

We are ready to combine these results and define a circuit C of size ≤ 2n+kβn with the property stated
in Lemma 4.1. This circuit on an input f ∈ {0,1}N where N = 2n computes as follows.

1. C sequentially computes the string a(i) = (y1, f (y1)), . . . ,(yi, f (yi)) for 1≤ i≤ t ′ and t ′ = 210βn−n3.

During stage i, C inspects all strings y ∈ {0,1}n, using the circuit Cn,i (Proposition 4.4) to fix yi as the
string that minimizes Cn,i(a(i)).

2. C uses the circuit Dn,t ′ (Lemma 4.5) to print the descriptions of n3 circuits of size at most s = 2βn/10n.
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3. Finally, C invokes n3 copies of the circuit En (Lemma 4.6) to complete the list y1, . . . ,yt of strings,
where t = t ′+n3 = 210βn.

Correctness of the construction follows from the properties of the circuits Cn,i, Dn,t ′ , and En in
combination with Lemma 4.7. More precisely, if f /∈ Circuit[2βn], then for every 1 ≤ i ≤ t ′, either
φ(a(i))≤ (1−1/4n)i or Q#(x(a(i−1)))< 4n2. To see this, note that if the latter condition does not hold,
then for some string y∗ as in Lemma 4.7 we get with respect to the corresponding extension a(i) that
φ(a(i))≤ φ(ai−1) · (1−1/2n). Since C tries all strings during its computation in step 1 when in stage i,
and the relative approximation given by circuit Cn,i is sufficiently precise, we are guaranteed in this case
(using an inductive argument) to fix a string yi such that φ(a(i)) ≤ φ(ai−1) · (1− 1/4n) ≤ (1− 1/4n)i.
On the other hand, if the condition Q#(x(a(i−1)))< 4n2 holds for some i≤ t ′, then by monotonicity it is
maintained until we reach i= t ′. Consequently, using that initially φ(ε) = 1, t ′= 210βn−n3, m(n)≤ 211βn,
and recalling that the second input of the relation Q has length m1/5 and that this parameter is related to
the definition of φ , when C reaches i = t ′ at the end of step 1 we have

Q#(x(a(t
′))) ≤ max{4n2, (1−1/4n)t ′ ·2m1/5}

≤ n3.

This implies using Lemmas 4.5 and 4.6 and the description of C that if f /∈ Circuit[2βn] then every circuit
of size at most s = 2βn/10n disagrees with f on some input string among y1, . . . ,yt .

Finally, we prove an upper bound on the circuit size of C. For every i≤ t ′ in step 1 and each string
y ∈ {0,1}n, C feeds Cn,i with the appropriate bit in the input string f and the previously computed string
a(i−1). This produces an estimate vy ∈ N represented as a string of length 2O(βn) that is stored as a pair
(y,vi). Using Proposition 4.4, all pairs (y,vy) can be simultaneously computed by a circuit of size at most
2n ·2O(βn). By inspecting each such pair in sequence, C can pick the string yi ∈ {0,1}n minimizing vi

using a sub-circuit of size 2n ·poly(2O(βn)). Also note that the bit f (yi) can be easily computed from yi

and f by a circuit of size O(N logN). ( f (yi) is the disjunction of N depth-2 formulas and each formula is
an AND of the indicator function (over y) of a fixed input and of a bit (matching the fixed input) in f ).
Therefore, each stage i can be done by a circuit of size at most 2n+O(βn), and since there are t ′ ≤ 210βn

stages, the computation in step 1. can be done by a circuit of size 2n+O(βn). Lastly, steps 2 and 3 can be
implemented by circuits of size at most 2O(βn) and 2(1+O(β ))n, resp., using the upper bounds on circuit
size provided by Lemma 4.5 and Lemma 4.6, resp., and the description of C. It follows that the overall
circuit size of C is at most 2n+kβn, where k is a constant that only depends on the circuits provided by the
initial assumption that NP⊆ Circuit[poly].

A remark on formulas vs. circuits. An obstacle to producing the anti-checker using formulas of
size N1+o(1) under the assumption that NP ⊆ Formula[poly] comes from the sequential aspect of the
construction. A string y j produced after the j-th round is inspected during each subsequent round of the
construction. In the case of formulas, the corresponding bits need to be recomputed each time, and the
overall complexity becomes prohibitive.
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4.3 The Anti-Checker Hypothesis

The existence of anti-checkers of bounded size witnessing the hardness of Boolean functions is far
from obvious. In this section, we explore consequences of a hypothetical phenomenon manifesting
on a higher level: the existence of a small collection of anti-checker sets witnessing hardness of all
hard functions. We show that a certain formulation of this Anti-Checker Hypothesis (AH) implies
unconditional lower bounds. Complementing this result, we prove unconditionally that (AH) holds for
functions that are hard in the average case.

For simplicity, we adopt a concrete setting of parameters for the hypothesis and in the results presented
in this section. Understanding the validity of (AH) with respect to other non-trivial setting of parameters
would also be interesting.

The Anti-Checker Hypothesis (AH). For every λ ∈ (0,1), there are ε > 0 and a collection Y =

{Y1, . . . ,Y`} of sets Yi ⊆ {0,1}n, where `= 2(2−ε)n and each |Yi|= 2n1−ε

, for which the following holds.

If f : {0,1}n→ {0,1} and f /∈ Circuit[2nλ

], then some set Y ∈ Y forms an anti-checker for f : For
each circuit C of size 2nλ

/10n, there is an input y ∈ Y such that C(y) 6= f (y).

The Anti-Checker Hypothesis can be shown to imply the hardness of a specific meta-computational
problem in NP.

Definition 4.9 (Succinct MCSP). Let s, t : N→ N be functions. The Succinct Minimum Circuit Size
Problem with parameters s and t, abbreviated Succinct-MCSP(s, t), is the problem of deciding given a list
of t(n) pairs (yi,bi), where yi ∈ {0,1}n and bi ∈ {0,1}, if there exists a circuit C of size s(n) computing
the partial function defined by these pairs, i. e., C(yi) = bi for every i ∈ [t].

Note that Succinct-MCSP(s, t) ∈ NP whenever s and t are constructive functions.

Theorem 4.10. Assume (AH) holds, and let ε = ε(λ )> 0 be the corresponding constant for λ = 1/2.
Then Succinct-MCSP(2n1/2

/10n,2n1−ε

) /∈ Formula[poly]. In particular, NP* Formula[poly].

Proof. The proof is by contradiction. Take λ = 1/2 in the Anti-Checker Hypothesis, and let ε = ε(λ )> 0
be the given constant. Let Fm : {0,1}N → {0,1} be a formula for Succinct-MCSP(2n1/2

/10n,2n1−ε

).
Assume Fm has size mk, where m ≤ poly(n) ·2n1−ε

is the total input length for this problem. We argue
below that from these assumptions it follows that Gap-MCSP[2n1/3

,2n2/3
] ∈ Formula[N2−δ ] for some

δ > 0. This contradicts Theorem 1.5 if α is taken to be a sufficiently small constant, which completes the
proof.

We define a formula E : {0,1}N →{0,1} that solves Gap-MCSP[2n1/3
,2n2/3

]. It projects the appropri-
ate bits of the input f to produce T = 2(2−ε)n instances of the problem Succinct-MCSP(2n1/2

/10n,2n1−ε

)
obtained from f and from the collection Y in the natural way. The formula E is defined as the conjunction
of T independent copies of the formula Fm from above. Note that E has at most T ·mk ≤ N2−δ leaves,
where δ = δ (ε) > 0. Finally, it is easy to see that it correctly solves Gap-MCSP using our choice of
parameters and (AH).

We say that a Boolean function f with n inputs is hard on average for circuits of size s if every circuit
of size s fails to compute f on at least 1/s fraction of all inputs.
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Proposition 4.11 (Average-Case AH). For every λ ∈ (0,1) there is ε > 0 such that for every large enough
n ∈N there is a collection Y= {Y1, . . . ,Y`} of `= 2n sets Yi ⊆ {0,1}n of size 2n1−ε

for which the following
holds. If f : {0,1}n→{0,1} is hard on average for circuits of size 2nλ

, then some set Y ∈ Y constitutes
an anti-checker for f : For each circuit C of size 2nλ

there is a string y ∈ Y such that C(y) 6= f (y).

Proof. Let H be the set of all Boolean functions f over n inputs that are hard on average for circuits
of size s = 2nλ

. Then we can generate anti-checkers for f ∈H by choosing n-bit strings uniformly at
random: for each i ∈ [2n], we let YYY iii be the set obtained by sampling with repetition 2n1−ε

random strings
in {0,1}n, where 1− ε > λ . Then, for every large enough n, for each circuit C of size at most 2nλ

and for
each f ∈H,

Pr[C|YYY iii ≡ f |YYY iii ] ≤ (1−1/2nλ

)2n1−ε

≤ exp(−2n1−ε

/2nλ

).

Now by a union bound over all such circuits, for a fixed f ∈H we get

Pr[YYY iii is not an anti-checker set for f ] ≤ exp(O(n ·2nλ

)) · exp(−2n1−ε

/2nλ

) < 1/4,

where the last inequality used our choice of ε . Finally,

Pr[∃ f ∈H s.t. none of YYY 111, . . . ,YYY 2n is an anti-checker set for f ] ≤ 22n · (1/4)2n
< 1.

There is therefore a collection Y with the desired properties.

Theorem 4.10 and Proposition 4.11 show a connection between establishing superpolynomial for-
mula size lower bounds for NP and understanding the difference between worst-case and average-case
collections of anti-checkers.

Appendix

5 Unconditional lower bounds for Gap-MKtP and Gap-MCSP

5.1 MKtP – A near-quadratic lower bound against U2-formulas

In this section, we provide the proof of Theorem 1.3.

Proof idea. We employ the technique of random restrictions to show that Gap-MKtP requires near-
quadratic size formulas. The idea is that, with high probability, a formula F of sub-quadratic size
simplifies under a random restriction ρρρ : [N]→{0,1,∗}. This will allow us to complete a fixed restriction
ρ either to a string wy of Kt complexity ≤ s1, or to a string wn of Kt complexity ≥ s2. Because the
simplified formula F �ρ depends on few input variables in ρ−1(∗), if we define wy and wn appropriately
F �ρ won’t be able to distinguish the two instances. Consequently, F does not compute Gap-MKtP[s1,s2].

In order for this idea to work, we cannot use a truly random restriction. This is because our restrictions
will set most of the variables indexed in [N] to simplify a near-quadratic size formula, and a typical
random restriction cannot be completed to a string of low Kt complexity. We use instead pseudorandom
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restrictions, which can be computed from a much smaller number of random bits. Previous work estab-
lished that such restrictions also simplify sub-quadratic size formulas. As a consequence, we are able to
extend any restriction in the support of a pseudorandom distribution of restrictions to either an “easy” or
a “hard” string, as explained in the paragraph above. (We remark that in order to improve our parameter
s1 in Gap-MKtP[s1,s2], it is useful to compose a sequence of pseudodeterministic restrictions.)

We proceed with the technical details. Let ρ : [N]→ {0,1,∗} be a restriction, and ρρρ be a random
restriction, i. e., a distribution of restrictions. We say that ρρρ is p-regular if Pr[ρρρ(i) = ∗] = p and
Pr[ρρρ(i) = 0] = Pr[ρρρ(i) = 1] = (1− p)/2 for every i ∈ [N]. In addition, ρρρ is k-wise independent if any k
coordinates of ρρρ are independent.

Lemma 5.1 (see [24, 62]). There exist q-regular k-wise independent random restrictions ρρρ distributed
over ρ : [N]→{0,1,∗} samplable with O(k log(N) log(1/q)) bits. Furthermore, each output coordinate
of the random restriction can be computed in time polynomial in the number of random bits.

Proof sketch. It is known that a k-wise independent distribution over {0,1}N can be generated with
O(k logN) bits so that each output coordinate of the distribution can be computed in polynomial time
given O(k logN) random bits and logN bits specifying the address of the coordinate, see [14]. In
Lemma 5.1 the distribution is supported over {0,1,∗}N , and in each coordinate we should have ∗ with
probability q and otherwise a uniform 0/1, and every set of k coordinates should be independent. We
want to generate such a distribution using only O(k logN log(1/q)) bits.

Let N′ = N log(1/q) and k′ = k log(1/q), and assume that q≥ 2−N .
Let D′ be a k′-wise independent distribution supported over {0,1}N′ . Note that it can be sampled with

O(k′ log(N′)) = O(k logN log(1/q)) bits. Now interpret any string y in the support of D′ as N blocks of
log(1/q) bits, and convert each block into a value in {0,1,∗} where ∗ appears with bias q under this
conversion. Let D be the resulting distribution, which is supported over {0,1,∗}N . Since k coordinates of
D depend on k′ = k log(1/q) coordinates of D′, and D′ is k′-wise independent, D is k-wise independent
and in each coordinate ∗ is seen with bias q.

As a consequence, we get p-regular k-wise independent random restrictions where each restriction in
the support has bounded Kt complexity. In order to define the Kt complexity of a restriction ρ : [N]→
{0,1,∗}, we view it as a 2N-bit string encoding(ρ) where each symbol in {0,1,∗} is encoded by an
element in {0,1}2. We abuse notation and write Kt(ρ) to denote Kt(encoding(ρ)).

Proposition 5.2. There is a distribution Dq,k of q-regular k-wise independent restrictions such that each
restriction ρ : [N]→{0,1,∗} in the support of Dq,k satisfies Kt(ρ) =O(k log(N) log(1/q)). Furthermore,
this is witnessed by a pair (M,wρ) where the machine M does not depend on ρ .

Proof. By Lemma 5.1, each output coordinate of ρ can be computed in time poly(`) from a seed wρ

of length `= O(k log(N) log(1/q)). Therefore, the binary string describing ρ can be computed in time
O(N ·poly(`)) from a string wρ with Kt(wρ) = O(k log(N) log(1/q)). It follows from Proposition 2.3
that Kt(ρ) = O(k log(N) log(1/q)). The furthermore part follows from the fact that the machine M is
obtained from the generator provided by Lemma 5.1, i. e., in order to produce different restrictions one
only needs to modify the input seeds, which are encoded in wρ .
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Let N = 2n. Given a function F : {0,1}N → {0,1} and a restriction ρ : [N]→ {0,1,∗}, we let F �ρ

be the function in {0,1}ρ−1(∗)→{0,1} obtained in the natural way from F and ρ . In this section, we use
L(F) to denote the size (number of leaves) of the smallest U2-formula that computes a function F .

The next result allows us to shrink the size of a formula using a pseudorandom restriction. This
restriction can be obtained by a composition of restrictions. This reduces the amount of randomness and
the corresponding complexity of the restriction.

Lemma 5.3 (Shrinkage from pseudorandom restrictions ([21, Theorem 28]; see [24, 32])). Let F : {0,1}N

→{0,1}, q = p1/r for an integer r ≥ 1, and L(F) · p2 ≥ 1. Moreover, let Rr
p,k be a distribution obtained

by the composition of r independent q-regular k-wise independent random restrictions supported over
[N]→{0,1,∗}, where k = q−2. Finally, assume that q≤ 10−3. Then, 14

Eρρρ∈RR
r
p,k
[L(F �ρρρ)] ≤ cr p2L(F),

where c≥ 1 is an absolute constant.

Proposition 5.4. There is a (p-regular k-wise independent) distribution Rr
p,k obtained by the composition

of r independent q-regular k-wise independent random restrictions supported over [N]→{0,1,∗}, where
k = q−2 and q = p1/r, such that each restriction ρ : [N]→ {0,1,∗} in the support of Rr

p,k satisfies
Kt(ρ) = O(rk log(N) log(1/q)).

Proof. We use the distribution Dq,k of restrictions provided by Proposition 5.2. A restriction ρ in
the support of Rr

p,k is therefore obtained through the composition of r restrictions ρ1, . . . ,ρr in the
support of Dq,k. For each i ∈ [r], Kt(ρr) = O(k log(N) log(1/q)). Moreover, each Kt upper bound
is witnessed by a pair (M,wi), where M can be taken to be the same machine for all i ∈ [r]. It is
not hard to see that for the string w = 1|w1|0w11|w2|0w2 . . .1|wr|0wr there is a machine M′ satisfying
|〈M′〉| ≤ |〈M〉|+O(1) and running in time tM′(w)≤ r ·maxi tM(wi)+poly(rN) such that the pair (M′,w)
witnesses that Kt(ρ) = O(rk log(N) log(1/q)).

We will also need the following simple proposition, which holds even with respect to Kolmogorov
complexity instead of Kt complexity.

Proposition 5.5. Let S⊆ [N] be a set of size at least two. There exists a function h : S→{0,1} such that
for every string w ∈ {0,1}N , if w agrees with h over S then Kt(w)≥ |S|−5log |S|.

Proof. It is easy to encode a pair (M,a) (as in Definition 2.1) satisfying |〈M〉|+ |a|< |S|−5log |S| by
a binary string of length at most 2 log |S|+2+ |〈M〉|+ |a|< |S|. Since each pair (M,a) outputs at most
one binary string of length N, it follows by a counting argument that for some choice of h : S→{0,1},
no string w of length N that agrees with h over S has Kt(w)< |S|−5log |S|.

14The assumption that q≤ 10−3 does not appear in [21, Theorem 28]. The proof sketch appearing there does not seem to
address the cases where pΓL(ψ)< 1 in their analyses of formula shrinkage in Lemma 27 and Theorem 28. This can be easily
fixed using appropriate expressions of the form 1+ p2L(ψ). Lemma 27 is only affected by a constant factor. Then, proceeding
by induction as in the proof of their Theorem 28 but also addressing this possibility, one gets instead an upper bound of the
form 1+ cqΓ(1+ cqΓ(. . .)), which translates to 1+(cqΓ)+(cqΓ)2 + . . .+(cqΓ)r−1 +(cqΓ)rL( f ). This can still be shown to
be less than cr p2L(F) (for a different universal constant c as in the statement of Lemma 5.3) using that q is sufficiently small
and therefore cqΓ ≤ 1/2 (note that Γ = 2 and c≤ 500 in [21]).
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The next lemma describes the high-level strategy of the lower bound proof.

Lemma 5.6 (Adaptation of Lemma 27 from [21]). There exists a constant a≥ 1 such that the following
holds. Let ρ : [N]→ {0,1,∗} be a restriction, V = ρ−1(∗), and let F : {0,1}N → {0,1} be a function
such that L(F �ρ)≤M. If

Kt(ρ)+a ·n ≤ s1(n) and (|V |−M)−5log(|V |−M) ≥ s2(n) and |V | ≥M+a,

then F does not compute Gap-MKtP[s1(n),s2(n)], where n = logN.

Proof. Under these assumptions, we define a positive instance wy ∈ YESN and a negative instance
wn ∈NON such that F(wy) = F(wn).

– wy ∈ {0,1}N is obtained from ρ by additionally setting each ∗-coordinate of this restriction to 0. Note
that, given the 2N-bit binary string encoding ρ , wy can be computed in time polynomial in N. It follows
from Proposition 2.3 that Kt(wy)≤ Kt(ρ)+a ·n, for some universal constant a≥ 1. Since this bound is
at most s1(n), we get that wy ∈ YESN .

– wn ∈ {0,1}N is defined as follows. Since L(F �ρ)≤M, F �ρ depends on at most M input coordinates
(indexed by elements in V ). Let W ⊆V ⊆ [N] be this set of coordinates. Moreover, let S =V \W . The
string wn ∈ {0,1}N is obtained from ρ by additionally setting each ∗-coordinate of this restriction in W
to 0, and then setting each remaining ∗-coordinate in S to agree with the function h : S→{0,1} provided
by Proposition 5.5. Since |S| ≥ |V |−M and the real-valued function φ(x) = x−5logx is non-decreasing
if x≥ a for a large enough constant a, our assumptions and Proposition 5.5 imply that Kt(wn)≥ s2(n).
Consequently, wn ∈NON .

Using that F restricted to ρ depends only on variables from W ⊆ ρ−1(∗), and that the strings wy

and wn agree over coordinates in ρ−1({0,1})∪W , it follows that F(wy) = F(wn). Since wy is a positive
instance while wn is a negative instance, F does not compute Gap-MKtP[s1(n),s2(n)].

We are now ready to set parameters in order to complete the proof of Theorem 1.3. For a sufficiently
large constant C′ ≥ 1, let

n def
= logN, p def

= N−1+α/2, r def
= n/C′, q def

= p1/r, k def
= q−2,

and assume that N is sufficiently large. Note that, under this choice of parameters, q = 2C′(−1+α/2) = Ω(1)
and q≤ 10−3.

Proposition 5.7 (Concentration Bound for |ρρρ−1(∗)|). For ρρρ ∼ Rr
p,k with parameters as above, we have

Pr[ |ρρρ−1(∗)| ≥ pN/2 ]≥ 1/2.

Proof. Note that ρρρ is p-regular and pairwise independent (i. e., k ≥ 2 for our choice of parameters). The
result then follows from Chebyshev’s inequality using mean µ = pN, variance σ2 = N p(1− p), and the
value of p.
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Using Proposition 5.4, we can sample a random restriction ρρρ ∈R Rr
p,k as described in the statement of

Lemma 5.3 such that each ρ : [N]→{0,1,∗} in the support of Rr
p,k satisfies

Kt(ρ) = O(rk log(N) log(1/q)) = O((n/C′)q−2n log(1/q)) ≤ (C/2)n2,

if C is a sufficiently large constant.
Toward a contradiction, let F : {0,1}N →{0,1} be a formula of size L(F) = N2−α that supposedly

computes Gap-MKtP[Cn2,2(α/2)n−2], where p2L(F) = 1, and let

M def
= 10 · cr p2L(F) = 10 · cr ≤ 2(α/4)n,

for a constant c≥ 1 as in Lemma 5.3, and using that C′ =C′(α) is large enough in the definition of r.
Invoking Lemma 5.3 and Markov’s inequality, Proposition 5.7, and a union bound, there is a fixed

restriction ρ : [N]→{0,1,∗} for which the following holds:

• For V def
= ρ−1(∗), we have |V | ≥ pN/2 = 2(α/2)n/2;

• Kt(ρ) ≤ (C/2)n2.

• L(F �ρ) ≤ M ≤ 2(α/4)n.

Using these parameters in the statement of Lemma 5.6, it is easy to check that its hypotheses are satisfied
given our choices of s1(n) =Cn2 and s2(n) = 2(α/2)n−2. This is a contradiction to our assumption that F
computes Gap-MKtP for these parameters, which completes the proof.

5.2 MKtP – Stronger lower bounds for large parameters

The goal of this section is to prove Theorem 1.2. First, we need a definition. We say that a generator
G : {0,1}r→{0,1}N δ -fools a function f : {0,1}N →{0,1} if∣∣∣ Pr

xxx∈R{0,1}N
[ f (x) = 1]− Pr

yyy∈R{0,1}r
[ f (G(y)) = 1]

∣∣∣ ≤ δ .

Similarly, G δ -fools a class of functions F if G δ -fools every function f ∈ F. The parameter r is called
the seed-length of G. We say that G is explicit if there is a uniform algorithm computing G in time
poly(N,1/δ ) on all input lengths r.

Theorem 5.8 ([24]). Let c > 0 be an arbitrary constant. The following hold:

1. There is an explicit generator GU2 : {0,1}r → {0,1}N using a seed of length r = s1/3+o(1) that
s−c-fools the class U2-Formula[s(N)] of formulas on N input variables.

2. There is an explicit generator GB2 : {0,1}r → {0,1}N using a seed of length r = s1/2+o(1) that
s−c-fools the class B2-Formula[s(N)] of formulas on N input variables.

2. There is an explicit generator GBP : {0,1}r → {0,1}N using a seed of length r = s1/2+o(1) that
s−c-fools the class BP[s(N)] of branching programs on N input variables.
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We now prove Theorem 1.2 (Part 1). The other cases are similar. We instantiate GU2 with s(N) =N3−ε

and c = 1. Then GU2 : {0,1}N1−δ ′ →{0,1}N for some δ ′ = δ ′(ε)> 0.

Proposition 5.9. For every string w ∈ {0,1}N1−δ ′
, let GU2(w) ∈ {0,1}N be the N-bit output of GU2 on w.

Then
Kt(GU2(w)) ≤ 2(1−δ ′/2)n

for every large enough n = logN.

Proof. This follows from Proposition 2.3 using that GU2 is explicit and therefore runs in time poly(N)
under our choice of parameters.

As a consequence of Proposition 5.9, every output of GU2 is always an N-bit string of Kt complexity
at most 2(1−δ )n, for a fixed δ > 0. On the other hand, it is well-known that a random N-bit string
(where N = 2n) has Kolmogorov complexity (and thus Kt complexity) at least 2n−1 with high probability.
It follows that Gap-MKtP[2(1−δ )n,2n−1] /∈U2-Formula[N3−ε ], since otherwise this would violate the
security of the generator GU2 against formulas of this type and size.

5.3 MCSP – A similar near-quadratic lower bound against U2-formulas

In this section, we sketch the proof of Theorem 1.5, which is the analogue of Theorem 1.3 in the
context of MCSP. More precisely, we explain why the argument carries over when we measure the
complexity of a string by circuit size instead of via Kt complexity, modulo small changes to the involved
parameters. A more detailed writeup of the result can be found in [15] where the lower bound was, in
fact, strengthened so that it works against formulas with certain local oracles.

As explained in Section 5.1, the crucial idea in the proof of Theorem 1.3 is that a pseudorandom
restriction simplifies a U2-formula of bounded size. For technical reasons, we employ a composition of
restrictions of small complexity, so that the overall complexity of the combined restriction is bounded.
This allows us to trivialize any small formula F using a fixed restriction ρ of bounded complexity, where
|ρ−1(∗)| is sufficiently large compared to other relevant parameters of the argument. Then, Lemma 5.6
employs a counting argument (via Proposition 5.5) to extend this restriction to a positive instance wy

and to a negative instance wn such that F(wy) = F(wn). This can be used to show that no small formula
correctly computes Gap-MKtP for our choice of parameters.

In order to establish Theorem 1.5, we make two observations. Firstly, Lemma 5.1 already gives
individual restrictions of low circuit complexity instead of low Kt complexity. Secondly, the counting
argument used to extend ρ to a negative instance wn works for most complexity measures including
circuit size, Kolmogorov complexity, etc.

Using these two observations, the proof goes through under minor adjustments of the relevant
parameters. We remark that one obtains a lower bound for Gap-MCSP[nd ,2(α/2−o(1))n] instead of Gap-
MCSP[Cn2,2(α/2)n−2] because of a polynomial circuit complexity overhead in the argument, which is
not present in the case of Kt complexity since there one takes the logarithmic of the running time when
measuring complexity, and because the circuit complexity (measured by number of gates) of a random
string can be slightly smaller than its Kt complexity.
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6 Hardness magnification and proof complexity

One instance of hardness magnification from [46] says that if an average-case version of MCSP (with
inputs being truth tables of Boolean functions) is worst-case hard for formulas of superlinear size, then its
succinct version (with inputs being lists of input-output tuples representing partial Boolean functions) is
hard for NC1 (see [46, Theorem 1]).

Hardness magnification for MCSP thus attacks strong circuit lower bounds by 1. employing the natural
proofs barrier, which states a conditional hardness of MCSP, as a suggestion to focus on lower bounds
against MCSP, and 2. exploiting the relation between feasible (succinct) and infeasible (uncompressed)
formulations of a meta-computational problem like MCSP.

This strategy has a history in proof complexity. The work of Razborov [49, 50] and Krajíček [35]
formulated the natural proofs barrier as a conditional lower bound in proof complexity, expressing
hardness of tautologies encoding circuit lower bounds. This idea was further developed in the theory of
proof complexity generators [34, 2]. It has led, in particular, to Razborov’s conjecture [51] about hardness
of Nisan-Wigderson generators for strong proof systems. Razborov’s conjecture is designed to imply
hardness of circuit lower bounds formalized in a way so that the whole truth table of the hard function is
hardwired into the formula.

The realization that a feasible formulation of circuit lower bounds should be much harder than
the infeasible truth table formulas inspired the result about unprovability of circuit lower bounds in
theories of bounded arithmetic such as VNC1, see [48], and the proposal [47, 0.1 Circuit lower bounds
and Complexity-Theoretic tautologies] to study exponentially harder lb formulas. Once the definitions
are given, it is for example clear that polynomial-size proofs of the lb formulas transform into almost
linear-size proofs of the truth table formulas. Another instance of this phenomena says that:

If the truth table formulas encoding a polynomial circuit lower bound require superlinear-size proofs
in AC0-Frege systems, then lb formulas encoding the same polynomial circuit lower bound require
(NC1)-Frege proofs of superpolynomial size (implicit in the proof of [42, Proposition 4.14]).

Since AC0-Frege lower bounds are known, this suggests a way for attacking Frege lower bounds. ([46]
established analogous results in circuit complexity, where it might be easier to prove lower bounds.
However, their version of the MCSP problem refers to the average-case complexity of truth-tables, which
seems harder to analyse. We refer to [46] for further discussion.)

The lb formulas result from the feasible witnessing of circuit lower bounds. In [42], the witnessing
was provided by a theorem of Lipton and Young [38] establishing the existence of anti-checkers, described
in Section 1.2. This allows to express the hardness of f without using its whole truth table. The present
paper extends the idea of anti-checkers into the context of hardness magnification in circuit complexity
for the standard worst-case formulation of MCSP.
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magnification. We also thank anonymous reviewers for many useful comments. This work was supported

THEORY OF COMPUTING, Volume 17 (11), 2021, pp. 1–38 31

http://dx.doi.org/10.4086/toc
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