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Abstract. Recently, Google announced the first demonstration of quantum computational
supremacy with a programmable superconducting processor. Their demonstration is based
on collecting samples from the output distribution of a noisy random quantum circuit, then
applying a statistical test to those samples called Linear Cross-Entropy Benchmarking (Linear
XEB). This raises a theoretical question: How hard is it for a classical computer to spoof
the results of the Linear XEB test? In this short note, we adapt an analysis of Aaronson and
Chen to prove a conditional hardness result for Linear XEB spoofing. Specifically, we show
that the problem is classically hard, assuming that there is no efficient classical algorithm
that, given a random n-qubit quantum circuit C, estimates the probability of C outputting a
specific output string, say 0n, with mean squared error even slightly better than that of the
trivial estimator that always estimates 1/2n. Our result automatically encompasses the case
of noisy circuits.
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1 Introduction

Quantum computational supremacy refers to the solution of a well-defined computational task by a
programmable quantum computer in significantly less time than is required by the best known algorithms
running on existing classical computers, for reasons of asymptotic scaling. It is a prerequisite for useful
quantum computation, and is therefore seen as a major milestone in the field. The task of sampling from
random quantum circuits (called RCS) is one proposal for achieving quantum supremacy [4, 5, 2]. Unlike
other proposals such as Boson Sampling [1] and Commuting Hamiltonians [6], RCS involves a universal
quantum computer – one theoretically capable of applying any unitary transformation. Furthermore, RCS
currently appears to be the easiest proposal to implement at a large enough scale to demonstrate quantum
supremacy.

A research team based at Google has announced a demonstration of quantum computational supremacy,
by sampling the output distributions of random quantum circuits [3]. To verify that their circuits were
working correctly, they tested their samples using Linear Cross-Entropy Benchmarking (Linear XEB).
This test simply checks that the observed samples tend to concentrate on the outputs that have higher
probabilities under the ideal distribution for the given quantum circuit. More formally, given samples
z1, . . . ,zk ∈ {0,1}n, Linear XEB entails checking that Ei[P(zi)] is greater than some threshold b/2n, where
P(z) is the probability of observing z under the ideal distribution. In the regime of 40-50 qubits, these
probabilities can be calculated by a classical supercomputer with enough time.

While there is some support for the conjecture that no classical algorithm can efficiently sample from
the output distribution of a random quantum circuit [5], less is known about the hardness of directly
spoofing a test like Linear XEB. Results about the hardness of sampling are not quite results about the
hardness of spoofing Linear XEB; a device could score well on Linear XEB while being far from correct
in total variation distance by, for example, always outputting the items with the k highest probabilities.

Under the assumption that the noise in the device is purely “depolarizing" – that a sample from the
circuit was sampled correctly with probability b−1 and otherwise sampled uniformly at random – there
is stronger evidence that it is difficult to spoof Linear XEB. Namely, if there is a classical algorithm
for sampling from a quantum circuit with perfectly depolarizing noise in time T , then with the help
of an all-powerful but untrusted prover, one can calculate a good estimate for output probabilities in
time 10T/(b−1) with high probability over circuits. Together with results of [9], it follows that under
the Strong Exponential Time Hypothesis there is a quantum circuit from which one cannot classically
sample with depolarizing noise in time (b−1)2(1−o(1))n [3]. We are unaware of any evidence that does
not depend on such a strong assumption about the noise.

However, Aaronson and Chen were able to prove the hardness of a different, related verification
procedure from a strong hardness assumption they called the Quantum Threshold Assumption (QUATH)
[2]. Informally, QUATH states that it is impossible for a polynomial-time classical algorithm to guess
whether a specific output string like 0n has greater-than-median probability of being observed as the output
of a given n-qubit quantum circuit, with success probability 1/2+Ω(1/2n). They went on to investigate
algorithms for breaking QUATH by estimating the output amplitudes of quantum circuits. For certain
classes of circuits, output amplitudes can be efficiently calculated, but in general even efficiently sampling
from the output distribution is impossible unless the polynomial hierarchy collapses [1, 6]. Aaronson
and Chen found an algorithm for calculating amplitudes of arbitrary circuits that runs in time dO(n) and
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poly(n,d) space, where d is the circuit depth. This is now used in some state-of-the-art simulations, but
is still too slow and of the wrong form to violate QUATH for larger circuits, as there is no way to trade
the accuracy for polynomial-time efficiency.

Here, we formulate a slightly different assumption that we call XQUATH and show that it implies
the hardness of spoofing Linear XEB. Like QUATH, the new assumption is quite strong, but makes
no reference to sampling. In particular, while we don’t know a reduction, refuting XQUATH seems
essentially as hard as refuting QUATH. Note that our result says nothing, one way or the other, about the
possibility of improvements to algorithms for calculating amplitudes. It just says that there’s nothing
particular to spoofing Linear XEB that makes it easier than nontrivially estimating amplitudes.

Indeed, since the news of the Google group’s success broke, at least four results have potentially
improved on the classical simulation efficiency, beyond what Google had considered. First, Gray and
Kourtis were able to optimize tensor network contraction methods to obtain a faster classical amplitude
estimator, though it is not competitive for calculating millions of amplitudes at once [7]. Second, Pednault
et al. argued that, by using secondary storage, the largest existing classical supercomputers should be
able to simulate the experiments done at Google in a few days [11]. Third, Napp et al. produced an
efficient algorithm for approximately simulating average-case quantum circuits from a certain distribution
of constant depth circuits, which is impossible to efficiently exactly simulate classically in the worst-case
unless the polynomial hierarchy collapses [10]. This algorithm is not efficient for circuits as deep as those
used by the Google team. Fourth, Zhou et al. used tensor network algorithms to simulate circuits as large
as in the Google experiment, but with different 2-qubit gates that were easier to simulate [12]. Our result
provides some explanation for why these improvements had to target the general problem of amplitude
estimation, rather than doing anything specific to the problem of spoofing Linear XEB.

2 Preliminaries

Throughout this note we will refer to random quantum circuits. Our results apply to circuits chosen from
any distribution D over circuits on n qubits that is unaffected by appending NOT gates to any subset
of the qubits at the end of the circuit.1 For every such distribution there is a corresponding version of
XQUATH. For instance, we could consider a distribution where d alternating layers of random single- and
neighboring two-qubit gates are applied to a square lattice of n qubits, similar to the Google experiment.
Note that the actual distribution in the Google experiment might have been affected by appending NOT
gates, but they could have applied random NOT gates to the end of their circuits classically and achieved
the same fidelity. If circuits from D include randomly-chosen NOT gates in the final layer, then D

obviously satisfies our condition.
Our assumption XQUATH states that no efficient classical algorithm can estimate the probability

of such a random circuit C outputting 0n, with mean squared error even slightly lower than the trivial
algorithm that always estimates 1/2n.

Definition 2.1 (XQUATH, or Linear Cross-Entropy Quantum Threshold Assumption). There is no
polynomial-time classical algorithm that takes as input a quantum circuit C ← D and produces an

1We will also assume that there is an efficient procedure for converting C←D to a new, identically distributed, C′ with NOT
gates applied to select outputs on C.
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estimate p of p0 = Pr[C outputs 0n] such that2

E[(p0− p)2] = E[(p0−2−n)2]−Ω(2−3n)

where the expectations are taken over circuits C as well as the algorithm’s internal randomness.

The simplest way to attempt to refute XQUATH might be to hope that C is near to a circuit that
is classically simulable – e. g., if C contains only near-Clifford gates. However, the fraction of such
circuits will decay exponentially with the number of gates in the circuit, rather than the number of qubits.
Alternatively, one might try k random Feynman paths of the circuit, all of which terminate at 0n, and take
the empirical mean over their contributions to the amplitude. This approach will similarly only yield an
improvement in mean squared error over the trivial algorithm that decays exponentially with the number
of gates. When the number of gates is much larger than 3n, as in the Google experiment, it is clear that
these approaches cannot violate XQUATH. Even the best existing quantum simulation algorithms do not
appear to significantly help in refuting XQUATH for reasonable circuit distributions.

The problem XHOG is to generate outputs of a given quantum circuit that have high expected
squared-magnitude amplitudes. These outputs are required to be distinct for reasons that will become
clear in the proof of Theorem 1.

Problem 2.2 (XHOG, or Linear Cross-Entropy Heavy Output Generation). Given a circuit C, generate k
distinct samples z1, . . . ,zk such that Ei[|〈zi|C |0n〉|2]≥ b/2n.

The interesting case is when b > 1, and we will generally think of b as a constant. Without fault-
tolerance, b−1 will quickly become very small for circuits larger than the experiment can handle. This is
a difficulty of applying complexity theory to finite experiments, which fail when the problem instance is
too large.

When the depth is large enough, the output probabilities p of almost all circuits are empirically
observed to be accurately described by the distribution 2ne−2n p, although this has only been rigorously
proven in some special cases [3, 4, 8]. Under this assumption, for observed outputs z from ideal circuits
C←D we have

E[|〈z|C |0n〉|2]≈
∫

∞

0

x
2n xe−xdx =

2
2n

So we expect an ideal circuit to solve XHOG with b ≈ 2, and a noisy circuit to solve XHOG with b
slightly larger than 1. Theorem 1 says that, assuming XQUATH, solving XHOG with b > 1 is hard to do
classically with many samples and high probability. For completeness, we show in the Appendix that
with Google’s number of samples and estimated circuit fidelity, they would be expected to solve XHOG
with sufficiently high probability.

3 The Reduction

We now provide a reduction from the problem in XQUATH to XHOG. Since we only call the XHOG
algorithm once in the reduction, and all other steps are efficient, solving XHOG actually requires as many
computational steps as solving the problem in XQUATH, minus O(k).

2The reason for the bound being 2−3n will emerge from our analysis.
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Theorem 3.1. Assuming XQUATH, no polynomial-time classical algorithm can solve XHOG with
probability s > 1

2 +
1

2b , and

k ≥ 1
((2s−1)b−1)(b−1)

.

With b = 1+δ and s = 1
2 +

1
2b + ε , the right-hand side is approximately 1/2εδ .

Proof. Suppose that A is a classical algorithm solving XHOG with the parameters above. Given a quantum
circuit C←D, first draw a uniformly random z ∈ {0,1}n, and apply NOT gates at the end of C on qubits i
where zi = 1 to get a circuit C′. According to our assumption on D, C′ is distributed exactly the same as C,
even conditioned on a particular z. Also, 〈0n|C |0n〉= 〈z|C′ |0n〉, so Pr[C outputs 0n] = Pr[C′ outputs z].
Call this probability p0.

Run A on input C′ to get z1, . . . ,zk with Ei[|〈zi|C |0n〉|2]≥ b2−n (when A succeeds). If z ∈ {zi}, then
our algorithm outputs p = b2−n; otherwise it outputs p = 2−n.

Let X = (p0−2−n)2− (p0− p)2. Then

E[X | z ∈ {zi} and A succeeded] = 2 ·2−n(b−1) ·E[p0 | z ∈ {zi} and A succeeded]+2−2n(1−b2)

≥ 2 ·2−n(b−1)(b2−n)+2−2n(1−b2)

= 2−2n(b−1)2

E[X | z ∈ {zi} and A failed] = 2 ·2−n(b−1) ·E[p0 | z ∈ {zi} and A failed]+2−2n(1−b2)

≥−2−2n(b2−1)

Since E[X | z 6∈ {zi}] = 0, and since z is uniformly random even conditioned on the output of A and its
success or failure,

E[X ] = 2−nks ·E[X | z ∈ {zi} and A succeeded]

+2−nk(1− s) ·E[X | z ∈ {zi} and A failed]

≥ 2−3nk((2s−1)b−1)(b−1)

which is Ω(2−3n) as long as k ≥ 1/((2s−1)b−1)(b−1). This completes the proof.

One simple instance of the theorem is to take s = 3
4 +

1
4b and k = 2(b−1)−2. Note that even with

s = 1, we need k ≥ (b−1)−2 samples for the proof to work.
In fact, if the number of samples k is much smaller than (b−1)−2, then even sampling uniformly at

random would pass XHOG with non-negligible probability. This can be seen using the Kullback-Leibler
(KL) divergence: For a single sample,

KL(e−p, pe−p)≈
∫

∞

0
e−p(b(p−1)− p+2) log(b(p−1)− p+2)d p

It is not hard to calculate that the Taylor expansion of the above around b = 1 is (b−1)2/2+O((b−1)3).
By additivity, the KL divergence for k samples is approximately k(b−1)2/2. By Pinsker’s inequality, the
total variation distance is at most √

k(b−1)2/4
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Therefore, in order to have total variation distance independent of b, one needs k ≈ (b−1)−2.
Finally, we would like to be confident that one is solving XHOG with sufficiently high probability s

for Theorem 1 to apply, without having to perform the experiment enough times to verify this directly.
This is easy to address under mild assumptions. Let Y = |〈z|C |0n〉|2, where z is sampled from our XHOG
device which was given C←D. Assuming E[Y ]≥ (2b−1)/2n, Chebyshev’s inequality shows that

Pr[Ȳk ≤ b/2n]≤ Pr[|Ȳk−E[Y ]| ≥ (b−1)/2n]≤ (σ2n)2

k2(b−1)2

when Y has standard deviation bounded by σ and Ȳk is the empirical mean of k samples of Y . So, as long
as σ = O(2−n), one only needs Ω((b−1)−2) samples – a condition we already used to prove Theorem 1.

4 Open Problems

We conclude with two open problems related to our reduction.

• Can the classical hardness of spoofing Linear XEB be based on a more secure assumption? Is there
a similar assumption to XQUATH that is equivalent to the classical hardness of XHOG?

• Is XQUATH true? What is the relationship of XQUATH to QUATH?
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