
THEORY OF COMPUTING, Volume 15 (8), 2019, pp. 1–7
www.theoryofcomputing.org

NOTE

Matrix Rigidity and the
Croot-Lev-Pach Lemma
Zeev Dvir∗ Benjamin L. Edelman

Received September 19, 2017; Revised October 2, 2018; Published October 15, 2019

Abstract: Matrix rigidity is a notion put forth by Valiant (1977) as a means for proving
arithmetic circuit lower bounds. A matrix is rigid if it is far, in Hamming distance, from
any low-rank matrix. Despite decades of effort, no explicit matrix rigid enough to carry
out Valiant’s plan has been found. Recently, Alman and Williams (STOC’17) showed that,
contrary to common belief, the Walsh–Hadamard matrices cannot be used for Valiant’s
program as they are not sufficiently rigid.

Our main result is a similar non-rigidity theorem for any qn×qn matrix M of the form
M(x,y) = f (x+ y), where f : Fn

q → Fq is any function and Fq is a fixed finite field of q
elements (n goes to infinity). The theorem follows almost immediately from a recent lemma
of Croot, Lev and Pach (2017) which is also the main ingredient in the recent solution of the
famous cap-set problem by Ellenberg and Gijswijt (2017).
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1 Introduction

We begin by defining the notion of matrix rigidity—a property of matrices that combines combinatorial
conditions (Hamming distance) with algebraic ones (matrix rank). Recall that the Hamming distance
between two vectors x,y ∈ Σn over some alphabet Σ is equal to the number of entries i ∈ [n] for which
xi 6= yi.

Definition 1.1 (Matrix rigidity). The rank-r rigidity of a matrix M over a field F, denoted RF
M(r), is

defined as the minimum Hamming distance between M and any matrix of rank at most r. In other words,
RF

M(r) is equal to the smallest number of entries in M that one needs to change in order to reduce the
rank of M to r.

Specifying the field is important since there are (0,1)-matrices that have high rank over the integers
but low rank over, say, F2.

The notion of matrix rigidity was introduced by Valiant [10] in the context of studying the arithmetic
circuit complexity of linear transformations. A linear circuit is a model of computation in which the
inputs represent the basic linear function x1, . . . ,xn and each gate takes two previously computed linear
forms and outputs some linear combination of them with coefficients in the field. We measure the size of
a linear circuit by counting the wires, and the depth by the longest path from input to output. A linear
circuit with n inputs and n outputs computes a linear map T : Fn→ Fn and many important linear maps
(e. g., Fourier transform) can be computed efficiently in this model. One can even show that any use of
multiplication gates can be eliminated (with negligible cost) when computing a linear map over C [7].

One of the most important problems in theoretical computer science is to prove unconditional
complexity lower bounds for realistic models of computation. Despite decades of attempts, we are still
unable to prove super-linear circuit lower bounds (in any realistic model) for logarithmic depth circuits.1

In an early attempt to bridge this gap Valiant [10] proved the following theorem.

Theorem 1.2 (Valiant). Let {MN}N∈N be a family of matrices with MN being of dimensions N×N over
a field F. If

RF
MN

(N/ log logN)≥Ω(N1+ε)

for some ε > 0 then MN cannot be computed by linear circuits of size O(N) and depth O(log(N))
(asymptotically, as N grows).

We say that a matrix is Valiant-rigid if it satisfies the rigidity parameters in the above theorem. It is
straightforward to check that for any matrix M and field F, RF

M(r)≤ (N− r)2 for any r. Valiant proved
that almost all matrices achieve this maximum rigidity: for almost all matrices M, RF

M(r) = (N− r)2 if
F is infinite and RF

M(r) = Ω((N− r)2/ logN) if F is finite. However, since Valiant’s original paper, it
remains an open problem to find an explicit Valiant-rigid matrix. By “explicit” we mean a matrix that can
be produced in polynomial in N time by a Turing machine given N as input.

The current best rigidity lower bound for any explicit matrix is RF
M(r) = Ω((N2/r) log(N/r)) [5, 8].

Until recently, the 2n× 2n Walsh–Hadamard matrix H = ((−1)〈x,y〉)x,y∈{0,1}n was conjectured to be
Valiant-rigid over the rational numbers [7]. A recent surprising result of Alman and Williams [1] showed

1One exception being arithmetic circuits computing polynomials of high degree, e. g., [9].
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that in fact the Hadamard matrix is not sufficiently rigid. Denoting N = 2n, they showed that for every
ε > 0 there exists ε ′ > Ω(ε2/ log(1/ε)) such that RQ

H(N
1−ε ′)≤ N1+ε .

The purpose of this note is to observe another “non-rigidity” phenomenon for a related (large) family
of matrices. The hope is that by understanding the reasons for this non-rigidity we can perhaps get closer
to proving stronger rigidity results. Our main result is the following.

Theorem 1.3. Let Fq be any finite field and let f : Fn
q→ Fq be any function. Let M be the qn×qn matrix

defined by Mx,y = f (x+ y) for x,y ∈ Fn
q. Denoting N = qn we have that for any ε > 0, there exists

ε
′ =

logq
4(q−1)2 ·

ε2

(logε−1)2 (1−o(1))

such that RFq
M (N1−ε ′)≤ N1+ε . The asymptotic notation is for fixed q as ε → 0.

One should note that, unlike Hadamard matrices, these matrices are over a finite field and not over the
rational numbers. Having non-rigid matrices over a finite field is a bit less surprising since there are more
“ways” for the rank to be low. It is an interesting open problem to decide if Theorem 1.3 still holds if one
is allowed to take a function f : Fn

q→ F where F is the rational numbers (or even the complex numbers).
A positive answer will imply the results of [1] since the Walsh–Hadamard matrix can be written over the
complex numbers as

(−1)〈x,y〉 = (−1)|x|/2(−1)|y|/2(−1)|x⊕y|/2,

where | · | represents the Hamming weight.
Another interesting question is that of replacing the group Fn

q indexing the rows/columns with other
groups. Subsequent to this paper being circulated, Dvir and Liu [3] proved that Mx,y = f (x+ y) is not
rigid for any f : G→ C where G is an abelian group. In particular, complex-valued Toeplitz matrices and
Fourier matrices are not Valiant-rigid.

1.1 The Croot-Lev-Pach (CLP) lemma

A cap set is a subset of Fn
q with no non-trivial three-term arithmetic progressions. We think of q > 2

as fixed and n going to infinity. The cap-set problem asks how the size of the largest possible cap set
(denoted r(n)) grows in terms of n. It was an open question whether r(n)≤ cn for some c < q. Croot,
Lev, and Pach [2] used a variant of the polynomial method to solve the corresponding problem for Zn

4
(the ring mod 4) in the affirmative, proving a bound of cn for some c < 4, and soon afterwards Ellenberg
and Gijswijt [4] adapted the CLP result to provide a positive answer to the cap set problem in Fq for all
q > 2. At the core of [2] is a lemma saying that, if P : Fn

q→ Fq is a polynomial of not too high degree,
then the qn×qn matrix M = (P(x+ y))x,y∈Fn

q
has very low rank (see below for the exact parameters). We

observe that, since any function can be well approximated by such a polynomial, the matrix f (x+ y) can
be changed in a small number of entries to give the low-rank matrix P(x+ y). This is the crux of the
proof of our main theorem. We give the full details of the proof in the next section.
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2 Proof of Theorem 1.3

Let F(q,n) denote the set of functions f : Fn
q→ Fq. Then, F(q,n) is an Fq-vector space of dimension qn.

A basis for this vector space is given by the set of qn monomials

M(q,n) = {xa1
1 · · ·x

an
n | 0≤ ai ≤ q−1}.

Let us denote by Md(q,n) the set of monomials in M(q,n) of total degree at most d and by Fd(q,n) the
set of polynomials of degree at most d. Note that Md(q,n) is a basis of Fd(q,n). Let md(q,n) denote the
size of Md(q,n) or equivalently the dimension of Fd(q,n).

We start by stating the precise form of the CLP lemma [2]. For completeness we include a short
sketch of the proof.

Lemma 2.1 (CLP). Let P ∈ Fd(q,n) and let M denote the qn×qn matrix with entries Mx,y = P(x+ y)
for x,y ∈ Fn

q. Then rank(M)≤ 2 ·mbd/2c(q,n).

Proof sketch. To prove the claim we will show that P(x+ y) = ∑
R
i=1 fi(x)gi(y) with R≤ 2 ·mbd/2c(q,n).

To see how to do this observe that, for each monomial m(x) = xa1
1 · · ·xan

n of degree at most d, the terms
in the expression m(x+ y) all have degree ≤ bd/2c in either x or y. Writing P as a sum of monomials
and grouping together terms with the same low-degree parts (in x first and then in y) gives the desired
decomposition.

The main power of the CLP lemma comes from the following quantitative observation. For a fixed q
and sufficiently large n, the numbers md(q,n) behave approximately like the CDF of a normal distribution
when we increase d from 0 to (q−1)n (the largest possible degree). Most of the mass will be concentrated
around the middle, (q− 1)n/2, with the tails decaying exponentially fast. We will use the following
(weak) estimate.

Claim 2.2. For any prime power q and any ε > 0 there exists

δ =
logq
q−1

· ε

logε−1 (1−o(1))

such that, for sufficiently large n, we have

m(1−δ )(q−1)n(q,n)≥ qn−qεn.

Proof. By symmetry it is enough to bound mδ (q−1)n(q,n)≤ qεn. We reduce this problem to the binary
alphabet case. We claim that md(q,n) ≤ md(2,n(q− 1)) for all d. To see this, consider the injective
mapping from Md(q,n) into Md(2,n(q−1)) sending xai

i to the multilinear monomial xi1xi2 · · ·xiai . For
the binary case we can use the standard tail bounds for the Binomial distribution to get that

mδ (q−1)n(2,n(q−1))≤ 2H(δ )(q−1)n

where H(δ ) is the binary entropy function. Hence, we need δ to satisfy 2H(δ )(q−1) ≤ qε . For small x,
H(δ )≤ x is achieved by some

δ =
x

logx−1 (1−o(1)).
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Plugging in

x =
logq
q−1

ε, we obtain δ =
logq
q−1

· ε

logε−1 (1−o(1)).

The following claim and corollary show that any function can be approximated well by a polynomial
of sufficiently high degree.

Claim 2.3. Let W be a subspace of finite codimension r in the vector space V . Let B be a basis for V .
Then, for any vector v ∈V , we can modify ≤ r of the coordinates of v (in the basis B) to produce a vector
that lies in W.

Proof. By the Steinitz exchange lemma, one can select r vectors, b1, . . . ,br ∈B, such that V =W ⊕U
where U is the span of the bi. Now write v as v = w+u where w ∈W and u ∈U . The B-coordinates of v
and w differ only at the bi.

Corollary 2.4. Let f ∈F(q,n) be any function. Then, for all d ≤ n, there exists a polynomial P∈Fd(q,n)
such that

|{x ∈ Fn
q | f (x) 6= P(x)}| ≤ qn−md(q,n).

Proof. This follows from the previous claim and from the fact that dim(Fd(q,n)) = md(q,n).

We are now ready to prove our main result.

Proof of Theorem 1.3. Let f : Fq→ Fq be as in the theorem and let ε > 0. Using Claim 2.2 and Corol-
lary 2.4, we can find δ > 0 and a polynomial P of degree at most d = (1−δ )(q−1)n such that P agrees
with f on all but qεn = Nε values in x ∈ Fn

q. Let M denote the qn×qn matrix with entries Mx,y = f (x+ y)
and let L denote the matrix of the same dimensions with entries Lx,y = P(x+ y). Then, M and L differ
in at most Nε entries in each row and in at most N1+ε entries altogether. Now, by Lemma 2.1 (the CLP
lemma) we have that rank(L) ≤ mbd/2c(q,n). But d/2 = (1/2− δ/2)(q− 1)n and so, by Hoeffding’s
inequality [6] (on the probability that a random monomial will have degree at most d/2), we have

mbd/2c(q,n)≤ e−
δ2n

4 qn = N1−δ 2/(4logq).

This is at most N1−ε ′ as long as ε ′ ≤ δ 2

4logq . Plugging in

δ =
logq
q−1

· ε

logε−1 (1−o(1)),

we obtain

ε
′ =

logq
4(q−1)2 ·

ε2

(logε−1)2 (1−o(1)).

This concludes the proof.
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