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Abstract: We prove anti-concentration results for polynomials of independent random
variables with arbitrary degree. Our results extend the classical Littlewood-Offord result for
linear polynomials, and improve several earlier estimates.

We discuss applications in two different areas. In complexity theory, we prove near-
optimal lower bounds for computing the PARITY function, addressing a challenge in com-
plexity theory posed by Razborov and Viola, and also address a problem concerning the
OR function. In random graph theory, we derive a general anti-concentration result on the
number of copies of a fixed graph in a random graph.

ACM Classification: F.1.1, G.2.2

AMS Classification: 68Q05, 68R10

Key words and phrases: complexity theory, random polynomials, anti-concentration, parity, random
graphs

1 Introduction

Let ξ be a Rademacher random variable (taking value ±1 with probability 1/2) and A = {a1, . . . ,an} be
a multi-set in R (here n→ ∞). Consider the random sum

S := a1ξ1 + · · ·+anξn

where ξi are i. i. d. copies of ξ .
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In 1943, Littlewood and Offord, in connection with their studies of random polynomials [16], raised
the problem of estimating P(S ∈ I) for arbitrary coefficients ai. They proved the following remarkable
theorem:

Theorem 1.1. There is a constant B such that the following holds for all n. If all coefficients ai have
absolute value at least 1, then for any open interval I of length 1,

P(S ∈ I)≤ Bn−1/2 logn .

Shortly after the Littlewood-Offord result, Erdős [10] removed the logn term to obtain the optimal
bound using an elegant combinatorial proof. Littlewood-Offord type results are commonly referred to as
anti-concentration (or small-ball) inequalities. Anti-concentration results have been developed by many
researchers through decades, and have recently found important applications in the theories of random
matrices and random polynomials; see, for instance, [19] for a survey.

The goal of this paper is to extend Theorem 1.1 to higher degree polynomials. Consider

P(x1, . . . ,xn) := ∑
S⊂{1,...,n};|S|≤d

aS ∏
j∈S

x j . (1.1)

The first result in this direction, due to Costello, Tao, and the third author, [8], is

Theorem 1.2. There is a constant B such that the following holds for all d,n. If there are mnd−1

coefficients aS of absolute value at least 1, then for any open interval I of length 1,

P
(
P(ξ1, . . . ,ξn) ∈ I

)
≤ Bm−2−(d

2+d)/2
.

The exponent 2−(d
2+d)/2 tends very fast to zero with d, and it is desirable to improve this bound. For

the case d = 2, Costello [7] obtained the optimal bound n−1/2+o(1). In a more recent paper [21], Razborov
and Viola proved

Theorem 1.3. There is a constant B such that the following holds for all d,n. If there are pairwise
disjoint subsets S1, . . . ,Sr each of size d such that the aSi have absolute value at least 1 for all i, then for
any open interval I of length 1,

P
(
P(ξ1, . . . ,ξn) ∈ I

)
≤ Br−g(d) , where g(d) =

1
d2d+1 .

This theorem improves the bound in Theorem 1.2 to m−g(d) via a simple counting argument.
Researchers in analysis have also considered anti-concentration of polynomials, for entirely different

reasons. Carbery and Wright [6] consider polynomials with ξi being i. i. d. Gaussian and prove the
following bound.

Theorem 1.4 ([6, Theorem 8]). There is a constant B such that

P
(
|P(ξ1, . . . ,ξn)| ≤ ε Var(P(ξ1, . . . ,ξn))

1/2)≤ Bdε
1/d .
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See [18] for related results. The above result has been extended by Mossel, O’Donnell and
Oleszkiewicz [17] to general variables, at a cost of an extra term on the right hand side depending
on how spread out the coefficients of P are.

The goal of this paper is to further improve these anti-concentration bounds, with several applications
in complexity theory. Our new results will be nearly optimal in a wide range of parameters. Let
[n] = {1,2, . . . ,n}. Following [21], we define the rank of polynomials as follows.

Definition 1.5. For a degree-d multilinear polynomial1 of the form (1.1), the rank of P, denoted by
rank(P), is the largest integer r such that there exist disjoint sets S1, . . . ,Sr ⊆ [n] of size d with |aS j | ≥ 1,
for j ∈ [r].

Our first main result concerns the Rademacher case. Let ξi, i = 1, . . . ,n be i. i. d. Rademacher random
variables.

Theorem 1.6. There is an absolute constant B such that the following holds for all d,n. For any
polynomial P of the form (1.1) with rank r ≥ 2 and for any interval I of length 1, we have

P
(
P(ξ1, . . . ,ξn) ∈ I

)
≤min

(
Bd4/3√logr

r
1

4d+1
,

exp(Bd logd log logr+Bd2 logd)√
r

)
.

For the case when d is fixed, it has been conjectured [19] that P(P(ξ1, . . . ,ξn) ∈ I) = O(r−1/2). This
conjectural bound is a natural generalization of the Erdős-Littlewood-Offord result and is optimal, as
shown by taking P = (ξ1 + · · ·+ ξn)

d , with n even. For this P, the rank r = Θ(n) and P(|P| ≤ 1/2) =
P(P = 0) = Θ(n−1/2). Our result confirms this conjecture up to some polylog term (logr)Bd logd .

In applications it is important that we can allow the degree d to tend to infinity with n. Our bounds in
Theorem 1.6 are non-trivial for degrees up to c logr/ log logr, for some positive constant c. Up to the
loglog term, this is as good as it gets, as we cannot hope to get any non-trivial bound for polynomials of
degree log2 r. For example, the degree-d polynomial on 2d ·d variables defined by

P(ξ ) =
2d

∑
i=1

d

∏
j=1

(ξi j +1) ,

where ξi j are i. i. d. Rademacher random variables, has r = 2d and P(P(ξ ) = 0) = Ω(1).
Next, we generalize our result to non-Rademacher distributions. As a first step, we consider the

p-biased distribution on the hypercube. For p ∈ (0,1), let µp denote the Bernoulli variable with p-biased
distribution:

P
ξ∼µp

(ξ = 0) = 1− p ,

P
ξ∼µp

(ξ = 1) = p

and let µn
p be the product distribution on {0,1}n.

1A polynomial is multilinear if the degree of each individual variable is at most 1 in the polynomial.
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Theorem 1.7. There is an absolute constant B such that the following holds. Let P be a polynomial of
the form (1.1) whose rank is r ≥ 2. Let p be such that r̃ := 2dαdr ≥ 3 where α := min{p,1− p}. Then
for any interval I of length 1,

P
ξ∼µn

p

(P(ξ ) ∈ I)≤min

(
Bd4/3(log r̃)1/2

(r̃)1/(4d+1) ,
exp(Bd logd log log r̃+Bd2 logd)√

r̃

)
.

The distribution µn
p plays an essential role in probabilistic combinatorics. For example, it is the

ground distribution for the random graphs G(N, p) (with n :=
(N

2

)
). We discuss an application in the

theory of random graphs in the next section.
Finally, we present a result that applies to virtually all sets of independent random variables, with a

weak requirement that these variables do not concentrate on a short interval.

Theorem 1.8. There is an absolute constant B such that the following holds. Let ξ1, . . . ,ξn be independent
(but not necessarily i. i. d.) random variables. Let P be a polynomial of the form (1.1) whose rank is r≥ 2.
Assume that there are positive numbers p and ε such that for each 1≤ i≤ n, there is a number yi such
that min{P(ξi ≤ yi),P(ξi > yi)}= p and P(|ξi− yi| ≥ 1)≥ ε . Assume furthermore that r̃ := (pε)dr ≥ 3.
Then for any interval I of length 1

P
(
P(ξ1, . . . ,ξn) ∈ I

)
≤min

(
Bd4/3(log r̃)1/2

(r̃)1/(4d+1) ,
exp(Bd logd log log r̃+Bd2 logd)√

r̃

)
.

Notice that even in the Gaussian case, Theorem 1.8 is incomparable to Theorem 1.4. If we use
Theorem 1.4 to bound P(P ∈ I) for an interval I of length 1, then we need to set ε = Var(P)−1/2, and the
resulting bound becomes B/(VarP)1/2d . For sparse polynomials, it is typical that r is much larger than
(VarP)1/d and in this case our bound is superior. To illustrate this point, let us fix a constant d > c > 0
and consider

P := ∑
S⊂{1,...,n},|S|=d

aS ∏
i∈S

xi

where aS are i. i. d. random Bernoulli variables with P(aS = 1) = n−c. It is easy to show that the following
hold with probability 1−o(1).

• For any set X ⊂ {1, . . . ,n} of size at least n/2, there is a subset S⊂ X , |S|= d, such that aS = 1.

• The number of nonzero coefficients is at most nd−c.

In other words, these two conditions are typical for a sparse polynomial with roughly nd−c nonzero
coefficients. On the other hand, if the above two conditions holds, then we have Var(P) ≤ nd−c and
r ≥ n/2d (by a trivial greedy algorithm). Our bound implies that

P(P ∈ I)≤C(d)n−1/2+o(1)

while Carbery-Wright bound only gives

P(P ∈ I)≤C(d)n−1/2+c/2d .
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The rest of the paper is organized as follows. In Section 2, we discuss applications in complexity
theory and graph theory, with one long proof delayed to Section 5. The proof of Theorem 1.6 is contained
in Section 3. The generalizations are discussed in Section 4.

All asymptotic notations are used under the assumption that n tends to infinity. All the constants are
absolute, unless otherwise noted. Throughout the paper, log denotes the natural logarithm.

2 Applications

2.1 Applications in complexity theory

We use our anti-concentration results to prove lower bounds for approximating Boolean functions by
polynomials in the Hamming metric. The notion of approximation we consider is as follows.

Definition 2.1. Let ε > 0 and µ be a distribution on {0,1}n. For a Boolean function f : {0,1}n→{0,1}
and a polynomial P : Rn→ R, we say P ε-approximates f with respect to2 µ if

P
x∼µ

(
P(x) = f (x)

)
> 1− ε.

We define dµ,ε( f ) to be the least d such that there is a degree-d polynomial which ε-approximates f with
respect to µ .

An alternate (dual) way to view the above notion is in terms of distributions over low-degree
polynomials—“randomized polynomials”—which approximate the function in the worst-case. In par-
ticular, by Yao’s min-max principle, dµ,ε( f ) ≤ d for every distribution µ if and only if there exists a
distribution D over polynomials of degree at most d which approximates f in the worst case: for all x,
PP∼D[P(x) = f (x)]> 1− ε .

Approximating Boolean functions by polynomials in the Hamming metric was first considered in the
works of Razborov [20] and Smolensky [22] over fields of finite characteristic as a technique for proving
lower bounds for small-depth circuits. This was also studied in a similar context over real numbers by
Beigel, Reingold, and Spielman [4] and Aspnes, Beigel, Furst, and Rudich [3]. The latter paper uses them
to prove lower bounds for AC0. More recently, in a remarkable result, Williams [24] (see also [25, 1])
used polynomial approximations in Hamming metric to obtain the best known algorithms for all-pairs
shortest path and other related algorithmic questions. Here, we study lower bounds for the existence of
such approximations.

Approximating Parity. Let Parn : {0,1}n→{0,1} denote the parity function:

Parn(x) = x1⊕ x2⊕·· ·⊕ xn

(where arithmetic is mod 2).

2We drop µ in the description when it is clear from context or if it is the uniform distribution.
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In [21], Razborov and Viola introduced another way to look at the problem of approximating parity
by low-degree polynomials in the Hamming metric. For two functions f ,g : {0,1}n→ R, define their
“correlation” to be the quantity

Corn( f ,g) = P
x

(
f (x) = g(x)

)
−1/2 ,

where x is uniformly distributed over {0,1}n. They highlighted the following challenge.

Challenge 2.2. Exhibit an explicit Boolean function f : {0,1}n→{0,1} such that for any real polynomial
P of degree at most log2 n, we have

Corn( f ,P)≤ o(1/
√

n) .

This challenge is motivated by studies in complexity theory and has connections to many other
problems, such as the famous rigidity problem; see [21] for more discussion.

The Parity function seems to be a natural candidate in problems like this. Razborov and Viola, using
Theorem 1.3, proved

Theorem 2.3 ([21]). For all sufficiently large n, Corn(Parn,P)≤ 0 for any real polynomial P of degree
at most (1/2) log2 log2 n.

With Theorem 1.6, we obtain the following improvement, which gets us to within a loglogn factor of
Challenge 2.2.

Theorem 2.4. For all sufficiently large n, Corn(Parn,P)≤ 0 for any real polynomial P of degree at most

logn
15loglogn

.

Proof. Let d be the degree of P. Following the arguments in the proof of [21, Theorem 1.1], we can
assume that P contains at least

√
n pairwise disjoint subsets Si each of size d with non-zero coefficients.

It suffices to show that the probability that P outputs a Boolean value is at most 1/2. By replacing P by
q(x1, . . . ,xn) := P((x1 +1)/2, . . . ,(xn +1)/2), we can convert P into a polynomial of the same degree
defined on {±1}n, in other words, on Rademacher variables. Then by Theorem 1.6, this probability is
bounded by

2B
d4/3 log1/2 n

n1/(8d+2) .

This is less than 1/2 for every

d ≤ logn
15loglogn

when n is sufficiently large.
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Approximating AND/OR. One of the main building blocks in obtaining polynomial approximations
in the Hamming metric is the following result for approximating the OR function.3

Claim 2.5. For all ε ∈ (0,1) and all distributions µ over {0,1}n, there exists a polynomial P : Rn→ R
of degree O((logn)(log1/ε)) such that Px∼µ(P(x) = OR(x))> 1− ε .

By iteratively applying the above claim, Aspnes, Beigel, Furst, and Rudich [3] showed that AC0

circuits of depth d have ε-approximating polynomials of degree at most

O
(
((logs)(log(1/ε)))d · (log(s/ε))d−1) .

We prove that the following lower bound for such approximations:

Theorem 2.6. There is a constant c > 0 and a distribution µ on {0,1}n such that for any polynomial
P : {0,1}n→ R of degree d < c(log logn)/(log loglogn),

P
x∼µ

(
P(x) = OR(x)

)
< 2/3 .

To the best of our knowledge no ω(1) lower bound was known for approximating the OR function.
We give an explicit distribution (directly motivated by the upper bound construction in [3]) under which
OR has no 1/3-error polynomial approximation. We define a distribution on {0,1}n by defining a
corresponding random variable x taking values in {0,1}n by the following procedure.

1. With probability 1/2 output x = (0, . . . ,0).

2. With probability 1/2 pick an index i ∈ [D] uniformly at random and output x ∼ µn
2−ai for some

suitably chosen parameters a,D.

The analysis then proceeds at a high level as in the lower bound for parity. However, we need some extra
care with the inductive argument as unlike for parity, we cannot consider arbitrary assignments of zeros
and ones to some subset of the coordinates of the OR function. We get around this hurdle by instead only
considering fixing parts of the input to 0 and decreasing the bias p to make sure that these coordinates are
indeed set to 0 with high probability. The details are deferred to Section 5.

2.2 The number of small subgraphs in a random graph

Consider the Erdős-Rényi random graph G(N, p). Let H be a small fixed graph (a triangle or C4, say).
The problem of counting the number of copies of H in G(N, p) is a fundamental topic in the theory
of random graphs (see, for instance, the textbooks [5, 13]). In fact, we can talk about a more general
problem of counting the number of copies of H in a random subgraph of any deterministic graph G on
N vertices formed by choosing each edge of G with probability p. Here, G′ is said to be a copy of H in
a graph G if G′ is isomorphic to H and the vertex set and edge set of G′ are subsets of those of G. We
denote this random variable by F(H,G, p). In this setting we understand that H has constant size, and the
size of G tends to infinity.

3OR(x1, . . . ,xn) is 1 if any of the bits xi is non-zero.
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It has been noticed that F can be written as a polynomial in terms of the edge-indicator random
variables. For example, the number of C4 copies (cycle of length 4) is

∑
i, j,k,l

ξi jξ jkξklξli

where the summation is over all quadruples i jkl which form a C4 in G and the Bernoulli random variable
ξi j represents the edge i j. Clearly, any polynomial of this type has n = e(G) Bernoulli random variables
ξi j with mean p, and its degree equals the number of edges of H. The rank r of F is exactly the size of
the largest collection of edge-disjoint copies of H in G.

The polynomial representation has been useful in proving concentration (i. e., large deviation) results
for F (see [15, 23], for instance). Interestingly, it has turned out that we can also use this to derive
anti-concentration result, in particular bounds on the probability that the random graph has exactly m
copies of H.

By Theorem 1.7, we have

Corollary 2.7. Assume that p is a constant in (0,1). Then for fixed H and any integer m which may
depend on G

P(F(H,G, p) = m)≤ r−1/2+o(1) ,

where r is the size of the largest collection of edge-disjoint copies of H in G. In particular, if G = Kn, then

P(F(H,Kn, p) = m)≤ n−1/2+o(1).

A copy G′ of H in a graph G is said to be an induced copy if G′ contains all the edges in G whose
endpoints are both in the vertex set of G′. A similar argument can be used to deal with the number of
induced copies of H, which can also be written as a polynomial with degree at most

(v
2

)
, with v being the

number of vertices of H. Details are left out as an exercise.
Finally, let us mention that in a recent paper [11], Gilmer and Kopparty obtained a precise estimate

for P(F(H,Kn, p) = m) in the case when H is a triangle.4 Their approach relies on a careful treatment of
the characteristic function. It remains to be seen if this method applies to our more general setting.

3 Proof of Theorem 1.6

There are two proofs to this theorem. In the initial version of the paper, we had a longer, but more
elementary proof based on the following ideas. To prove the first bound in Theorem 1.6, we first consider
a simple case when the polynomial P is sufficiently “nice,” which basically means a fair contribution
from each variable to P. These polynomials are said to be regular and their regularity allows one to
efficiently relate the anti-concentration property of polynomials of Rademacher random variables to that
of Gaussian ones and then use Theorem 1.4 for Gaussian case.

To complete the argument, we use a regularity lemma which shows that any polynomial can be written
as a small-depth decision tree where most leaves are labeled by polynomials which are either (1) regular
or (2) polynomials which are fixed in sign with high probability over a uniformly random input. In the

4We would like to thank J. Kahn for pointing out this reference.
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first case, you get a regular polynomial of high rank (as the tree is shallow) and we apply the previous
argument. In the second case, we argue directly that the anti-concentration probability is small.

To prove the second bound of Theorem 1.6, we follow the same conceptual approach but adopt a
more careful analysis following the work of Kane [14]. We again use the regularity lemma to reduce
to regular polynomials. And for a sufficiently regular polynomial, consider partitioning the variables
into blocks of equal size. One can show that with significant probability, there exists a block on which
the restricted polynomial has small standard deviation compared to its mean, which guarantees good
anti-concentration bound.5

Here we present a shorter proof suggested by Daniel Kane. It shows that the desired anti-concentration
probability can be bounded in terms of average sensitivity of polynomial threshold functions (see
Lemma 3.4) and then uses the bounds on average sensitivity of [9] and [14]. The two proofs are quite
close in spirit. The current one is shorter and perhaps more elegant, benefiting from Lemma 3.4, which is
of independent interest.

To start the proof, by covering the interval I by smaller intervals, we can assume that I has length 2/3.
Let S1, . . . ,Sr be the disjoint sets in the definition of rank(P). By conditioning on the random variables
outside

⋃
Si, we can assume that n = dr.

By subtracting the center of I from P, we can then assume that I = [−1/3,1/3].
Let f = sign(P+2/5) and g = sign(P−1/3) where sign(a) := 1a>0. Note that the term 2/5 can be

replaced by anything that is slightly greater than 1/3. For each k ∈ [n] for each x = (x1, . . . ,xn) ∈ {±1}n,
let xk := (x1, . . . ,−xk, . . . ,xn) be the point obtained by negating the k-th coordinate. Define the influence
of the k-th variable to f (and similarly for g) to be

Infk( f ) := P
(

f (ξ1, . . . ,ξn) 6= f (ξ1, . . . , ,−ξk, . . . ,ξn)
)
.

For each Si, we claim that

P(|P(ξ1, . . . ,ξn)| ≤ 1/3)≤ 2d
∑
k∈Si

(Infk( f )+ Infk(g)) . (3.1)

Assuming (3.1), taking the sum over i ∈ [r], we get

r P(|P(ξ1, . . . ,ξn)| ≤ 1/3)≤ 2d(AS( f )+AS(g)) (3.2)

where

AS( f ) :=
n

∑
k=1

Infk( f )

is called average sensitivity of f . Then the bounds in Theorem 1.6 follow from the following correspond-
ing bounds on average sensitivity from Diakonikolas et al. [9] and Kane [14], respectively.

Theorem 3.1 ([9, Theorem 1.1]). There exists an absolute constant C such that for any polynomial Q of
degree d on n random Rademacher variables, we have

AS(h)≤Cd(logn)n1−1/(4d−2)

where h = sign(Q).

5An interested reader can find this proof at http://arxiv.org/abs/1507.00829 [version 4].
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Notice that by applying this bound, we only get a slightly weaker bound than the first bound in
Theorem 1.6. Our claimed bound is proved by the same techniques as in [9] but with more careful
analysis. We again refer the interested reader to our old proof.

Theorem 3.2 ([14, Theorem 1.2]). Under the assumptions of Theorem 3.1, we have

AS(h)≤
√

n(logn)Cd logdCd2 logd .

To prove (3.1), let G be the set of all x ∈ {±1}n such that |P(x)| ≤ 1/3 and let G′ be the set of all
x ∈ {±1}n such that there exists k ∈ Si for which f (x) 6= f (xk) or g(x) 6= g(xk). It suffices to show that

|G| ≤ 2d |G′| . (3.3)

Without loss of generality, assume that Si = [d]. Let x ∈ G. Since

Varξ1,...,ξd
P(ξ1, . . . ,ξd ,xd+1, . . . ,xn)≥ 1 ,

P(ξ1, . . . ,ξd ,xd+1, . . . ,xn) cannot always stay in an interval of length less than 1. Thus, there exist
x′1, . . . ,x

′
d such that

|P(x′1, . . . ,x′d ,xd+1, . . . ,xn)|> 2/5 .

And so, either f (x) 6= f (x′1, . . . ,x
′
d ,xd+1, . . . ,xn) or g(x) 6= g(x′1, . . . ,x

′
d ,xr+1, . . . ,xn). Going bit by bit,

there exists a k ∈ Si and an x′ ∈ {±1}n that differs from x only in the first d elements such that f (x′) 6=
f (x′k) or g(x′) 6= g(x′k). In other words, x′ ∈ G′.

Since x′ and x differ only in the first d elements, the map from G to G′ that maps x to x′ is at
most 2d-to-1, proving (3.3). This completes the proof of (3.1) and thereby completing the proof of
Theorem 1.6.

Remark 3.3. Inequality (3.2) is interesting in its own right. It readily implies the following bound.

Lemma 3.4. Let P be a degree-d polynomial of the form (1.1) with rank r ≥ 2. Then

P(|P(ξ1, . . . ,ξn)| ≤ 1/3)≤ 2d+1

r
max

Q
AS(sign(Q))

where the maximum runs over all degree-d polynomials Q on dr variables.

It is worth mentioning the following conjecture.

Conjecture 3.5 (Gotsman-Linial Conjecture [12]). Let Q be a degree-d polynomial on n variables. Then

AS(sign(Q))≤ 2−n+1
d−1

∑
k=0

(
n

b(n− k)/2c

)
(n−b(n− k)/2c) . (3.4)

For a fixed d, the right-hand side of (3.4) is O(n−1/2). Thus, the Gotsman-Linial Conjecture im-
plies the Conjecture in [19] that P(P(ξ1, . . . ,ξn) ∈ I) = O(r−1/2) for P and I as in the assumptions of
Theorem 1.6.
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4 General distributions

4.1 Proof of Theorem 1.7

We reduce the p-biased case to the uniform distribution at the expense of a loss in the rank of the
polynomial and then apply Theorem 1.6.

First notice that if x∼ µp, then 1−x∼ µ1−p. And so, by replacing the polynomial P by Q(x1, . . . ,xn)=
P(1− x1, . . . ,1− xn), we can exchange the roles of p and 1− p. Therefore, without loss of generality, we
assume that α = p≤ 1/2.

Our assumption 2d pdr≥ 3 guarantees that log log(2d pdr) = Ω(1) and hence by choosing the implicit
constants on the right-hand side of Theorem 1.7 to be sufficiently large, we can assume that 2d pdr is
greater than 100 (say).

Let η1, . . . ,ηn and ξ ′1, . . . ,ξ
′
n be independent Bernoulli random variables with P(ηi = 0) = 1/2 and

P(ξ ′i = 0) = 1−2p. Let ξi = ηiξ
′
i then ξ1, . . . ,ξn are i. i. d. Bernoulli variables with P(ξi = 0) = 1− p.

Therefore, we need to bound P(P(ξ1, . . . ,ξn) ∈ I).
From the definition of rank(P), there exist disjoint sets S1, . . . ,Sr such that |aS j | ≥ 1 for all j = 1, . . . ,r.

We have

P(ξ1, . . . ,ξn) = ∑
S⊂[n],|S|≤d

(
aS ∏

i∈S
ξ
′
i

)
∏
i∈S

ηi .

Conditioning on the variables ξ ′i , P becomes a polynomial of degree d in terms of the ηi, whose
coefficients associated with S j are

bS j := aS j ∏
i∈S j

ξ
′
i .

For each such j, we have

P
ξ ′1,...,ξ

′
n

(|bS j | ≥ 1) = P(ξ ′i = 1,∀i ∈ S j) = (2p)d .

Now, since the sets S j are disjoint, the events |bS j | ≥ 1 are independent. Define

X = ∑
j=1,...,r

1|bS j |≥1 .

By Chernoff’s bound (see, for example, [2, Corollary A.1.14]), we have, for 0 < γ < 1,

P(|X−EX | ≥ γ EX)≤ 2e−γ2 EX/3 .

Setting γ = 1/2, we conclude that with probability at least 1− exp(−2d−1 pdr/6), there are at least
2d−1 pdr indices j with |b j| ≥ 1. Conditioning on this event, we obtain a polynomial of degree d in terms
of η1, . . . ,ηn which has rank at least 2d−1 pdr. The theorem now follows from applying Theorem 1.6 to
this polynomial and noting that the additional error of exp(−2d−1 pdr/6) is smaller than both terms from
Theorem 1.6.
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4.2 Proof of Theorem 1.8

By replacing P(x1, . . . ,xn) by Q(x1, . . . ,xn) = P(x1+y1, . . . ,xn+yn) and ξi by ξi−yi, we can also assume
without loss of generality that yi = 0 for all i. Furthermore, we can assume that P(ξi ≤ 0) = p for all
i. Indeed, if for some i, P(ξi > 0) = p, we replace ξi by −ξi and modify the polynomial P accordingly
to reduce to the case P(ξi < 0) = p. And then the proof runs along the same lines as in the case
P(ξi ≤ 0) = 0.

For each i = 1, . . . ,n, let ξ
+
i and ξ

−
i be independent random variables satisfying

P(ξ+
i ∈ A) = P(ξi ∈ A | ξi > 0) and P(ξ−i ∈ A) = P(ξi ∈ A | ξi ≤ 0)

for all measurable subsets A⊂ R. Let η1, . . . ,ηn be i. i. d. random Bernoulli variables (independent of all
previous random variables) such that P(ηi = 0) = p. Let ξ ′i = ηiξ

+
i +(1−ηi)ξ

−
i , then ξ ′i and ξi have the

same distribution. Therefore, it suffices to bound the probability that P(ξ ′1, . . . ,ξ
′
n) belongs to I. We have

P(ξ ′1, . . . ,ξ
′
n) = P

(
η1(ξ

+
1 −ξ

−
1 )+ξ

−
1 , . . . ,ηn(ξ

+
n −ξ

−
n )+ξ

−
n
)

= ∑
S⊂[n],|S|=d

(
aS ∏

i∈S
(ξ+

i −ξ
−
i )

)
∏
i∈S

ηi +Q ,

where Q is some polynomial that has degree < d in terms of the ηi when all the ξ
±
i are fixed. From the

definition of rank(P), let S1, . . . ,Sr be disjoint subsets of [n] with |aS j | ≥ 1 for all 1≤ j ≤ r. Conditioning
on the variables ξ

±
i , the polynomial P becomes a polynomial of degree d in terms of the ηi, whose

coefficients associated with S j are
bS j := aS j ∏

i∈S j

(ξ+
i −ξ

−
i )

accordingly. For each such j, we have

P
ξ
±
1 ,...,ξ±n

(|bS j | ≥ 1)≥ P(ξ+
i −ξ

−
i ≥ 1,∀i ∈ S j).

Since ξ
+
i ≥ 0≥ ξ

−
i a. e., we have

2P(ξ+
i −ξ

−
i ≥ 1)≥ P(ξ+

i ≥ 1)+P(ξ−i ≤−1) = P(|ξi| ≥ 1)≥ ε .

Hence,
P

ξ
±
1 ,...,ξ±n

(|bS j | ≥ 1)≥ 2−d
ε

d .

Now, since the sets S j are disjoint, the events |bS j | ≥ 1 are independent. Therefore, using a
Chernoff-type bound as in the proof of Theorem 1.7, we can conclude that with probability at least
1− exp(−2−dεdr/12), there are at least r2−dεd/2 indices j with |b j| ≥ 1. Conditioning on this event,
we obtain a polynomial of degree d in terms of η1, . . . ,ηn which has rank at least r2−dεd/2. Using
Theorem 1.7, we obtain the desired bound.
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5 Proof of Theorem 2.6

Let a be an integer to be chosen later. Let D = bloga(log2 n− 1)c be the largest integer such that
2−aD ≥ 2/n. Let µ be the distribution obtained by the following procedure:

1. With probability 1/2 output x = 0 (the all 0’s vector).

2. With probability 1/2 pick an index i ∈ {1, . . . ,D} uniformly at random and output x∼ µn
2−ai .

We next show that for some constant c > 0, there exists no polynomial P of degree

d < c
log logn

log loglogn

such that Px∼µ(P(x) = OR(x))≥ 2/3. Let P be such a polynomial. Then, necessarily, P(0) = 0; as

P
x∼µ

(P(x) = 0)≤ 1
2
+

1
2

(
1−2−aD

)n
≤ 1

2
+

1
2

(
1− 2

n

)n

<
2
3
,

there must exist a set of indices I ⊆ [D] with |I| ≥Ω(D) such that for all i ∈ I,

P
x∼µ

2−ai
(P(x) = 1) = Ω(1) .

Let I = {i1 < i2 < · · · < ik} and for ` ∈ [k], let p` = 2−ai` . Now, by Theorem 1.7 applied to the
polynomial P−1 and x∼ µn

p1
, we get that either rank(P)≤ (3/2p1)

d or

Ω(1) = P(P(x) = 1)≤ O(d4/3)
log(rank(P)(2p1)

d)1/2

(rank(P)(2p1)d)1/(4d+1) .

Hence, in any case, rank(P)≤ r1 = dO(d)/pd
1 . This in turn implies that there exists a set S1 ⊆ [n] of r1 ·d

indices such that the polynomial P1 = PS1 obtained by assigning the value 0 to the variables in S1 is of
degree at most d−1. For a set S⊆ [n] and a distribution µ on {0,1}, let µS denote the distribution where
the coordinates in S are chosen independently according to µ . Then, for x∼ µ

[n]
p2 ,

Ω(1) = P
x
(P(x) = 1)

= P(xS1 = 0) ·P
x
(P(x) = 1 | xS1 = 0)+P(xS1 6= 0) ·P

x
(P(x) = 1 | xS1 6= 0)

≤ P
x∼µ

[n]\[S1 ]
p2

(P1(x) = 1)+P(xS1 6= 0)

≤ P
x∼µ

[n]\[S1 ]
p2

(P1(x) = 1)+ |S1| · p2 .

Thus,

P
x∼µ

[n]\[S1 ]
p2

(P1(x) = 1)≥Ω(1)−dO(d)+1 · (p2/pd
1) = Ω(1)−dO(d)+12−ai2+dai1 ≥Ω(1)−dO(d)2−ai1

,
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for a≥ 2d. Further, note that P1(0) = 0.
Iterating the argument with P1 and so forth, we get a sequence of polynomials P1,P2, . . . ,Pk−1 such

that for 1≤ j ≤min(d,k−1), Pj is of degree at most d− j, Pj(0) = 0 and for x∼ µ
[n]\(S1∪···∪S j)
p j+1 ,

P
x
(Pj(x) = 1) = Ω(1)−dO(d)+ j2−a.

This clearly leads to a contradiction if k > d and a≥Cd logd for a large enough constant C (so that the
right-hand side of the above equation is non-zero for j = d).

Therefore, setting a =Cd logd, for a sufficiently large constant C, we must have k = Ω(D)≤ d. That
is, log2(n−1) = aO(d) = dO(d). Thus, we must have d = Ω(1)(log logn)/(log loglogn), completing the
proof of Theorem 2.6.
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In Erdős Centennial, volume 25 of Bolyai Soc. Math. Studies, pp. 409–463. Springer, 2013.
[doi:10.1007/978-3-642-39286-3_16, arXiv:1301.0019] 2, 3, 10

THEORY OF COMPUTING, Volume 12 (11), 2016, pp. 1–17 15

http://dx.doi.org/10.1215/S0012-7094-06-13527-5
http://arxiv.org/abs/math/0505156
http://dx.doi.org/10.1145/1806689.1806763
http://dx.doi.org/10.1137/110855223
http://arxiv.org/abs/0909.5011
http://projecteuclid.org/euclid.bams/1183507531
http://dx.doi.org/10.1002/rsa.20604
http://arxiv.org/abs/1412.0257
http://dx.doi.org/10.1007/BF01305949
http://dx.doi.org/10.1002/9781118032718
http://dx.doi.org/10.1109/CCC.2013.15
http://dx.doi.org/10.1007/s00037-014-0086-z
http://arxiv.org/abs/1210.1283
http://dx.doi.org/10.1007/s004930070014
http://mi.mathnet.ru/eng/msb6161
http://dx.doi.org/10.1109/SFCS.2005.53
http://dx.doi.org/10.4007/annals.2010.171.295
http://mi.mathnet.ru/eng/aa847
http://arxiv.org/abs/math/0108212
http://dx.doi.org/10.1007/978-3-642-39286-3_16
http://arxiv.org/abs/1301.0019
http://dx.doi.org/10.4086/toc


RAGHU MEKA, OANH NGUYEN, AND VAN VU

[20] ALEXANDER A. RAZBOROV: Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Math. Notes, 41(4):333–338, 1987. [doi:10.1007/BF01137685] 5

[21] ALEXANDER A. RAZBOROV AND EMANUELE VIOLA: Real advantage. ACM Trans. Comput.
Theory, 5(4):17:1–17:8, 2013. Preliminary version in ECCC. [doi:10.1145/2540089] 2, 3, 6

[22] ROMAN SMOLENSKY: Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proc. 19th STOC, pp. 77–82. ACM Press, 1987. [doi:10.1145/28395.28404] 5

[23] VAN H. VU: Concentration of non-Lipschitz functions and applications. Random Structures
Algorithms, 20(3):262–316, 2002. [doi:10.1002/rsa.10032] 8

[24] RICHARD RYAN WILLIAMS: Faster all-pairs shortest paths via circuit complexity. In Proc. 46th
STOC, pp. 664–673. ACM Press, 2014. [doi:10.1145/2591796.2591811, arXiv:1312.6680] 5

[25] RICHARD RYAN WILLIAMS: The polynomial method in circuit complexity applied to algo-
rithm design (invited talk). In Proc. 34th Internat. Conf. on Foundation of Software Tech.
and Theoret. Comput. Sci. (FSTTCS’14), volume 29 of LIPIcs, pp. 47–60. Springer, 2014.
[doi:10.4230/LIPIcs.FSTTCS.2014.47] 5

AUTHORS

Raghu Meka
Assistant professor
University of California, Los Angeles
raghum cs ucla
http://www.raghumeka.org/

Oanh Nguyen
Ph. D. student
Yale University
New Haven, CT
oanh nguyen yale edu
http://users.math.yale.edu/public_html/People/otn2.html

Van Vu
Professor
Yale University
New Haven, CT
van vu yale edu
http://users.math.yale.edu/public_html/People/vuha.html

THEORY OF COMPUTING, Volume 12 (11), 2016, pp. 1–17 16

http://dx.doi.org/10.1007/BF01137685
http://eccc.hpi-web.de/report/2012/134/
http://dx.doi.org/10.1145/2540089
http://dx.doi.org/10.1145/28395.28404
http://dx.doi.org/10.1002/rsa.10032
http://dx.doi.org/10.1145/2591796.2591811
http://arxiv.org/abs/1312.6680
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.47
http://www.raghumeka.org
www.ucla.edu
http://www.raghumeka.org/
https://sites.google.com/a/yale.edu/oanhnguyen/
www.yale.edu
http://users.math.yale.edu/public_html/People/otn2.html
http://campuspress.yale.edu/vanvu/
www.yale.edu
http://users.math.yale.edu/public_html/People/vuha.html
http://dx.doi.org/10.4086/toc


ANTI-CONCENTRATION FOR POLYNOMIALS

ABOUT THE AUTHORS

RAGHU MEKA is an assistant professor in the Computer Science department at UCLA. He
is broadly interested in complexity theory, learning, and probability theory. He got his
Ph. D. from UT Austin under the direction of David Zuckerman. He spent two years
as a postdoctoral fellow at the Institute for Advanced Study, Princeton and Rutgers
University.

OANH NGUYEN is a graduate student in mathematics at Yale University. Her undergraduate
advisor, Professor Duong Minh Duc, at University of Science, Ho Chi Minh City,
Vietnam, played an important role in deepening her interest in analysis. She gained much
of her knowledge and interest in probability from her graduate advisor, Van Vu. Her
research interests include analysis, combinatorics, and probability theory.

VAN VU completed his undergraduate studies at Eötvös University (Budapest) in 1994. He
then moved to Yale and wrote his Ph. D. thesis under the direction of László Lovász. He
is currently the Percey F. Smith professor of mathematics at Yale, after having spent time
at the Institute for Advanced Study, Microsoft Research, UC San Diego, and Rutgers.
His research interests include probability, number theory, combinatorics, and theoretical
computer science.

THEORY OF COMPUTING, Volume 12 (11), 2016, pp. 1–17 17

http://www.cs.ucla.edu/
http://www.utexas.edu/
https://www.cs.utexas.edu/~diz/
https://www.ias.edu/
http://www.princeton.edu/main/
http://www.rutgers.edu/
http://www.rutgers.edu/
http://math.yale.edu/
http://www.math.hcmuns.edu.vn/~dmduc/
http://www.hcmus.edu.vn/
http://www.hcmus.edu.vn/
http://users.math.yale.edu/public_html/People/vuha.html
https://www.elte.hu/en/
http://math.yale.edu/
http://www.cs.elte.hu/~lovasz/
https://www.ias.edu/
https://www.microsoft.com/en-us/research/
https://ucsd.edu/
http://www.rutgers.edu/
http://dx.doi.org/10.4086/toc

	Introduction
	Applications
	Applications in complexity theory
	The number of small subgraphs in a random graph

	Proof of Theorem 1.6
	General distributions
	Proof of Theorem 1.7
	Proof of Theorem 1.8

	Proof of Theorem 2.6
	Acknowledgements
	References

