
THEORY OF COMPUTING, Volume 11 (16), 2015, pp. 403–412
www.theoryofcomputing.org

NOTE

Quantum Algorithm for Monotonicity
Testing on the Hypercube

Aleksandrs Belovs∗ Eric Blais†

Received March 24, 2015; Revised July 16, 2015; Published December 29, 2015

Abstract: In this note, we develop a bounded-error quantum algorithm that makes
Õ(n1/4ε−1/2) queries to a function f : {0,1}n→ {0,1}, accepts when f is monotone, and
rejects when f is ε-far from being monotone. This result gives a super-quadratic improve-
ment compared to the best known randomized algorithm for all ε = o(1). The improvement
is cubic when ε = 1/

√
n.

ACM Classification: F.1.1, F.1.2

AMS Classification: 68Q12, 81P68

Key words and phrases: Boolean functions, quantum query complexity, property testing, monotonicity

1 Introduction

The problem of testing whether a Boolean function is monotone is one of the fundamental—and most
extensively studied—problems in property testing. Let � denote the bitwise partial order on the Boolean
hypercube {0,1}n, i. e., x � y iff x j ≤ y j for all j ∈ [n]. The function f : {0,1}n→ {0,1} is monotone
iff f (x)≤ f (y) for all x� y, and it is ε-far from monotone if it cannot be made monotone by changing

∗A. B. is supported by FP7 FET Proactive project QALGO. Part of this work was completed while A. B. was at MIT,
supported by Scott Aaronson’s Alan T. Waterman Award from the National Science Foundation. A. B. thanks Andris Ambainis
and Ronald de Wolf for their comments on the previous versions of this note.

†E. B. is funded by an NSERC Discovery Grant. Part of this work was completed while E. B. was a Simons Postdoctoral
Fellow at MIT.

© 2015 Aleksandrs Belovs and Eric Blais
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2015.v011a016

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2015.v011a016

ALEKSANDRS BELOVS AND ERIC BLAIS

its value on at most an ε fraction of the inputs. An ε-tester for monotonicity is a randomized algorithm
that distinguishes monotone functions from those that are ε-far from monotone with large (say, 2/3)
probability. Determining the minimum number of queries required to test monotonicity of Boolean
functions was the first problem considered in the context of testing combinatorial (as opposed to algebraic)
properties of Boolean functions [13] and, despite extensive study (see for example the recent papers [9,
11, 10, 16] and the references therein), it has still not been completely resolved.

Goldreich et al. [13] initiated the study of the monotonicity testing problem and showed that it
is possible to ε-test the monotonicity of a function f : {0,1}n → {0,1} with O(n/ε) queries to f .
Their algorithm is called the edge tester, and it is very simple: Repeatedly sample the edges of the
hypercube—i. e., pairs of elements x� y ∈ {0,1}n for which there is exactly one coordinate i ∈ [n] such
that xi 6= yi—uniformly at random and verify that f satisfies the monotonicity condition on the endpoints
of each edge. The anti-dictator function, defined by f (x) = 1−xi for some i ∈ [n], shows that the analysis
of this algorithm is tight.

The edge tester remained the most efficient monotonicity testing algorithm for more than a decade,
until Chakrabarti and Seshadhri [9] introduced a new ε-tester for monotonicity that requires only
Õ(n7/8ε−3/2) queries. (Here and afterwards Õ hides terms polylogarithmic in n and 1/ε .) The
Chakrabarti–Seshadhri algorithm, like the edge tester, is a pair tester. A pair tester is any algorithm of the
following form: It repeatedly samples from some predefined probability distribution on the pairs of the
inputs x� y from the hypercube. If the pair violates monotonicity, the tester rejects. If no violation was
found after sufficiently many samples, the tester accepts. Unlike the edge tester, however, the Chakrabarti–
Seshadhri algorithm selects pairs of inputs that have Hamming distance up to O(

√
n). The same high-level

approach has since been used by Chen, Servedio, and Tan [11] to obtain a Õ(n5/6ε−4)-query ε-tester for
monotonicity and, very recently, by Khot, Minzer, and Safra in their beautiful paper [16] which shows
that Õ(

√
n/ε2) queries suffice to ε-test monotonicity.

In summary, research on testing monotonicity of Boolean functions has led to two incomparable
ε-testers: the edge tester with query complexity O(n/ε), and the Khot–Minzer–Safra algorithm with
query complexity Õ(

√
n/ε2). The first one has better dependence on ε , the second one on n. Furthermore,

these two algorithms—along with every other algorithm that has been proposed for testing monotonicity
of Boolean functions—are pair testers. Let us also note that pair testers are non-adaptive algorithms (they
can select all their queries in advance) and have one-sided error (they always accept monotone functions).

In this paper, we consider the query complexity of quantum algorithms that test the monotonicity of
Boolean functions. See [19] for a recent survey on quantum property testing. While the quantum query
complexity of the monotonicity testing problem has not been explicitly studied before, we can apply
quantum amplitude amplification [6] to obtain a quadratic improvement on the query complexity of any
pair tester. As a result, the edge tester and the Khot–Minzer–Safra algorithm imply that we can ε-test
monotonicity with O(

√
n/ε) and Õ(n1/4/ε) quantum queries, respectively. Our main result is a simple

quantum algorithm that combines the best dependence from both of these algorithms.

Theorem 1.1. It is possible to ε-test monotonicity of a function f : {0,1}n→{0,1} with

O
(1√

ε
·n1/4 logn

)
quantum queries.

THEORY OF COMPUTING, Volume 11 (16), 2015, pp. 403–412 404

http://dx.doi.org/10.4086/toc

QUANTUM ALGORITHM FOR MONOTONICITY TESTING

Let us compare this result with the known lower bounds on classical algorithms. Lower bounds for
this problem are notoriously hard. For many years, the best known lower bound on the non-adaptive
randomized query complexity was Ω(logn) for constant ε by Fischer et al. [12]. Recently, it was improved
by Chen et al. [11, 10] to almost Ω(

√
n), essentially matching the query complexity of the Khot–Minzer–

Safra algorithm. The best known adaptive lower bound is only Ω(logn), which immediately follows
from the non-adaptive lower bound.

For pair testers, more lower bounds are known. First, Briët et al. [7] proved that any pair tester
with query complexity of the form O(α(n)/ε) must have α(n) = Ω(n/ logn). Also, Khot, Minzer, and
Safra [16] gave an example of a family of functions that are at distance Θ(1/

√
n) to being monotone, but

for which any pair tester needs Ω(n3/2) queries to find a non-monotone pair with constant probability. This
matches the performance of both the edge tester and the Khot–Minzer–Safra algorithm on this instance.
Our algorithm, on the other hand, needs only Õ(

√
n) queries, which constitutes a cubic improvement to

both algorithms.

This is an interesting development, as very few super-quadratic but still polynomial quantum speed-
ups are known. We can only mention a cubic speed-up for exponential congruences by van Dam and
Shparlinski [24], and quartic speed-ups for finding counterfeit coins by Iwama et al. [15], and learning
the “exactly-half junta” by Belovs [4]. There is also a recent algorithm by Ambainis et al. [1] for the
gapped version of group testing with up to a quartic improvement.

Our algorithm is based on a technical result from [16] and the (dual) adversary bound. The technical
result, Lemma 3.1 below, is the cornerstone of the analysis of the Khot–Minzer–Safra algorithm, and the
main part of [16] is devoted to derivation of this lemma. With the lemma in hand, the remaining analysis
of their algorithm is relatively short. Interestingly, we need the same technical result and our analysis is
also quite short, but we use this result in a very different way.

The adversary bound characterizes quantum query complexity up to a constant factor, as shown
by Reichardt et al. [21, 18]. Previously, the adversary bound was used for formula evaluation [23, 25],
triangle and other subgraph detection [3, 17, 5], the k-distinctness problem [2], and learning symmetric
juntas [4]. This paper demonstrates an application to property testing. Also, many of the above algorithms
use the framework of learning graphs [3], whereas our algorithm is not directly based on this framework.

2 Adversary bound

In query algorithms, the complexity measure is the number of queries to the input, given as a black
box. All other computations are considered free. For the definition of randomized and quantum query
complexity, the reader may refer to [8]. We use a general result by Reichardt et al., and obtain our
quantum query algorithm from the corresponding adversary bound. Since the input to our algorithm is a
total Boolean function, we define the version of the adversary bound tailored for this special case.

Let n be a positive integer, and assume that X and Y are two disjoint sets of total functions from
{0,1}n to {0,1}. We will deal with the following problem. Given a query access to a function f ∈ X∪Y,
the task is to detect whether f ∈ X or f ∈ Y. For this problem, the (dual) adversary bound is equal to the

THEORY OF COMPUTING, Volume 11 (16), 2015, pp. 403–412 405

http://dx.doi.org/10.4086/toc

ALEKSANDRS BELOVS AND ERIC BLAIS

optimal value of the following optimization problem:

minimize max
f∈X∪Y∑x∈{0,1}n Xx[[f , f]] (1a)

subject to ∑x: f (x)6=g(x) Xx[[f ,g]] = 1 for all f ∈ X and g ∈ Y; (1b)

Xx � 0 for all x ∈ {0,1}n, (1c)

where Xx are (X∪Y)× (X∪Y) positive semi-definite matrices, and Xx[[f ,g]] stands for the (f ,g)-entry of
the matrix Xx. The adversary bound is very useful because of the following result:

Theorem 2.1 ([14, 21, 22, 18]). The (bounded-error) quantum query complexity of distinguishing X and
Y is equal to the value of the adversary bound (1), up to a constant factor.

In particular, Theorem 2.1 implies that the value of a feasible solution to the optimization problem (1)
gives an upper bound on the quantum query complexity of the corresponding problem.

3 Proof of Theorem 1.1

We complete the proof of Theorem 1.1 by constructing a feasible solution to the adversary bound (1) in
the case where X is the set of all monotone functions and Y is the set of all functions that are ε-far away
from any monotone function.

Let us introduce some notation. The hypercube is the graph with the vertex set {0,1}n, where two
vertices are adjacent iff they differ in exactly one coordinate. We consider the hypercube as an oriented
graph, i. e., we define an edge of the hypercube as a pair xy, where x≺ y and x and y differ in exactly one
coordinate. For a function f : {0,1}n→{0,1}, an (a,b)-edge of f is an edge xy of the hypercube such
that f (x) = a and f (y) = b. We also use the notation {x,y} to denote an edge of the hypercube without
imposing the order, i. e., {x,y} = xy if x ≺ y, and {x,y} = yx if x � y. The total influence or average
sensitivity I(f) is the number of edges xy of the hypercube such that f (x) 6= f (y), divided by 2n−1. For a
monotone function, it is known to be O(

√
n) [20, Theorem 2.33]. We use x⊕ j for the string x with the

j-th bit flipped. Finally, for any predicate P, we use 1P to denote the indicator variable that equals 1 when
P is true and 0 otherwise.

Unlike the Khot–Minzer–Safra algorithm, which tests pairs of inputs at significant distance, our
algorithm is essentially an improvement of the edge tester. Let us first describe a solution to the adversary
bound that corresponds to the edge tester. This solution has query complexity O(

√
n/ε). We then show

how to improve the query complexity to Õ(n1/4ε−1/2).

Edge tester. For a function g ∈ Y, let Eg denote the set of all (1,0)-edges of g. Goldreich et al. [13]
showed that for every function g ∈ Y,

|Eg| ≥ ε2n .

This inequality is the central component of the analysis of the classical edge tester; it is also a key
component of the analysis of the quantum algorithm described below.

THEORY OF COMPUTING, Volume 11 (16), 2015, pp. 403–412 406

http://dx.doi.org/10.4086/toc

QUANTUM ALGORITHM FOR MONOTONICITY TESTING

To construct a feasible solution to the adversary bound (1), we first construct a positive semidefinite
matrix Zx, j for each edge {x,x⊕ j} of the hypercube. Formally, let Zx, j = φx, jφ

∗
x, j, where the entries of the

vector φx, j are labeled by functions f ∈ X∪Y and are defined by

φx, j[[f]] =

1/
√

L if f ∈ X, x j = 0, and f (x) = 0,
1/
√

L if f ∈ X, x j = 1, and f (x⊕ j) = f (x) = 1,√
L/|E f | if f ∈ Y, and {x,x⊕ j} ∈ E f , or

0 otherwise,

where L is a parameter to be specified later. The coefficients of φx, j are chosen so that for any functions
f ∈ X, g ∈ Y and any edge xy of the hypercube, we have

Zx, j[[f ,g]] ·1 f (x)6=g(x)+Zy, j[[f ,g]] ·1 f (y)6=g(y) =
1xy∈Eg

|Eg|
(2)

if x and y differ in the j-th coordinate.
We can obtain a feasible solution to the adversary bound (1) by setting

Xx = ∑
j∈[n]

Zx, j

for every x ∈ {0,1}n. The matrices Xx clearly satisfy (1c). Summing (2) over all edges of the hypercube,
we see that the matrices also satisfy (1b). For any f ∈ X and g ∈ Y, we have

∑
x∈{0,1}n

Xx[[f , f]] =
n2n−1

L
and ∑

x∈{0,1}n

Xx[[g,g]] = 2|Eg| ·
L
|Eg|2

≤ L
ε2n−1 .

Choosing L = 2n−1√nε yields
√

n/ε as the value of the objective function (1a).

Our solution. Intuitively, the main problem with the above solution is that each f ∈ X is used in n2n−1

matrices Zx, j, whereas each g ∈ Y is only used in ε2n of them. Thus, many uses of f are “wasted,” which
results in the relatively high query complexity of the algorithm. To reduce the query complexity, we wish
to reduce the number of matrices featuring f .

A natural idea is to “pack” together matrices that share the same vertex of the hypercube. To describe
this idea, we need some more notation. For g ∈ Y, define the (1,0)-graph of g to be the subgraph of the
hypercube induced by the set of all (1,0)-edges of g. Let Gg be a subgraph of the (1,0)-graph of g, and
let Eg denote the set of edges in Gg. Note that this time we do not require Eg to contain all (1,0)-edges of
g. The precise choice of Gg will be specified later. Let degg(x) denote the degree of a vertex x ∈ {0,1}n

in Gg.
For each x ∈ {0,1}n, consider a positive semidefinite matrix Yx = ψxψ∗x , where

ψx[[f]] =

{
1/
√

K if f ∈ X, or√
K deg f (x)/|E f | if f ∈ Y,

THEORY OF COMPUTING, Volume 11 (16), 2015, pp. 403–412 407

http://dx.doi.org/10.4086/toc

ALEKSANDRS BELOVS AND ERIC BLAIS

and K is a parameter to be defined later. For f ∈ X and g ∈ Y, we have

∑
x: f (x)6=g(x)

Yx[[f ,g]] = ∑
x: f (x)6=g(x)

degg(x)
|Eg|

= ∑
xy∈Eg

1 f (x)6=g(x)+1 f (y)6=g(y)

|Eg|
. (3)

Since g(x) = 1 and g(y) = 0 for any xy ∈ Eg, we essentially recover (2) if f (x) = f (y). The only bad
case is when xy is a (0,1)-edge for f , in which case we get 2 in the numerator on the right-hand side
of (3). We can fix this using matrices Zx, j that are very similar to those used in the edge tester. Specifically,
for every x ∈ {0,1}n and j ∈ [n], let Zx, j = φx, jφ

∗
x, j with

φx, j[[f]] =

−1/
√

L if f ∈ X, x j = 0, and (x,x⊕ j) is a (0,1)-edge,√
L/|E f | if f ∈ Y, x j = 0, and (x,x⊕ j) ∈ E f , or

0 otherwise,

where L is another parameter to be fixed later. Note that in this definition, any function f ∈ X is used in
only O(

√
n2n) of the Zx, j matrices, since this is the number of (0,1)-edges of f . This is the reason we get

the improvement from n1/2 to n1/4 queries. Also, this step has no classical analogue, and that is where we
get a super-quadratic improvement to the classical edge tester and the Khot–Minzer–Safra algorithm.

Define Zx = ∑ j∈[n] Zx, j. For every f ∈ X and g ∈ Y,

∑
x: f (x)6=g(x)

Zx[[f ,g]] =− ∑
xy∈Eg

1 f (x)6=g(x) ·1 f (y)6=g(y)

|Eg|
. (4)

Finally, define Xx = Yx +Zx. Clearly, this choice satisfies (1c). Also, for any xy ∈ Eg, at least one of the
conditions f (x) 6= g(x) or f (y) 6= g(y) is satisfied, so equations (3) and (4) imply (1b).

It remains to bound the objective value (1a). The contribution of the matrices Zx to (1a) is easily
computed. Namely, for f ∈ X and g ∈ Y,

∑
x∈{0,1}n

Zx[[f , f]] =
I(f)2n−1

L
and ∑

x∈{0,1}n

Zx[[g,g]] = |Eg| ·
L
|Eg|2

≤ L
ε2n .

The matrices Yx are more problematic. For g ∈ Y, we have

∑
x∈{0,1}n

Yx[[g,g]] =
K
|Eg|2 ∑

x∈{0,1}n

degg(x)
2 .

For this expression to be small enough to obtain the query complexity claimed in Theorem 2.1, we
not only need Eg to be as large as in the edge tester, but we also need the edges of Gg to be evenly
distributed among the vertices. As it turns out, the main technical result behind the analysis of the
Khot–Minzer–Safra algorithm claims exactly this:

Lemma 3.1 ([16, Lemma 7.1]). For every g : {0,1}n→{0,1} that is ε-far from being monotone, there
exists a subgraph Gg of the (1,0)-graph of g such that

|Eg|= Ω

(
ε2n
√

∆(Gg)

log2 n

)
, (5)

where Eg is the edge set of Gg, and ∆(Gg) is the maximal degree of Gg.

THEORY OF COMPUTING, Volume 11 (16), 2015, pp. 403–412 408

http://dx.doi.org/10.4086/toc

QUANTUM ALGORITHM FOR MONOTONICITY TESTING

Fix Gg to be one of the graphs whose existence is guaranteed by Lemma 3.1. We can now estimate
the objective value (1a). For a function f ∈ X, we have

∑
x∈{0,1}n

Xx[[f , f]] = 2n
(

1
K
+

I(f)
2L

)
= 2n ·O

(
1
K
+

√
n

L

)
. (6)

Meanwhile, for g ∈ Y, we have

∑
x∈{0,1}n

Xx[[g,g]] = ∑
x∈{0,1}n

K degg(x)
2

|Eg|2
+ |Eg| ·

L
|Eg|2

.

Using the inequality ∑x degg(x)
2 ≤ ∆(Gg)∑x degg(x) and the identity ∑x degg(x) = 2|Eg| (the handshak-

ing lemma), we observe that

∑
x∈{0,1}n

Xx[[g,g]]≤ K
∆(Gg)

|Eg|
·

∑x degg(x)
|Eg|

+
L
|Eg|

= 2K
∆(Gg)

|Eg|
+

L
|Eg|

.

Applying (5), we obtain

∑
x∈{0,1}n

Xx[[g,g]]≤
log2 n
ε2n ·O

(
K
√

∆(Gg)+
L√

∆(Gg)

)
=

log2 n
ε2n ·O

(
K
√

n+L
)
. (7)

Comparing (6) and (7), we see that the objective value is minimized when

K = 2n√
εn−1/4/ logn and L = 2n√

εn1/4/ logn .

Taking these values, the objective value (1a) is O(n1/4ε−1/2 logn), as desired.

References

[1] ANDRIS AMBAINIS, ALEKSANDRS BELOVS, ODED REGEV, AND RONALD DE WOLF: Efficient
quantum algorithms for (gapped) group testing and junta testing. Preprint, 2015. To appear in
SODA’16. [arXiv:1507.03126] 405

[2] ALEKSANDRS BELOVS: Learning-graph-based quantum algorithm for k-distinctness. In Proc. 53rd
FOCS, pp. 207–216. IEEE Comp. Soc. Press, 2012. [doi:10.1109/FOCS.2012.18, arXiv:1205.1534]
405

[3] ALEKSANDRS BELOVS: Span programs for functions with constant-sized 1-certificates. In Proc.
44th STOC, pp. 77–84. ACM Press, 2012. [doi:10.1145/2213977.2213985, arXiv:1105.4024] 405

[4] ALEKSANDRS BELOVS: Quantum algorithms for learning symmetric juntas via the adversary bound.
Comput. Complexity, 24(2):255–293, 2015. Preliminary version in CCC’14. [doi:10.1007/s00037-
015-0099-2, arXiv:1311.6777] 405

THEORY OF COMPUTING, Volume 11 (16), 2015, pp. 403–412 409

http://arxiv.org/abs/1507.03126
http://dx.doi.org/10.1109/FOCS.2012.18
http://arxiv.org/abs/1205.1534
http://dx.doi.org/10.1145/2213977.2213985
http://arxiv.org/abs/1105.4024
http://dx.doi.org/10.1109/CCC.2014.11
http://dx.doi.org/10.1007/s00037-015-0099-2
http://dx.doi.org/10.1007/s00037-015-0099-2
http://arxiv.org/abs/1311.6777
http://dx.doi.org/10.4086/toc

ALEKSANDRS BELOVS AND ERIC BLAIS

[5] ALEKSANDRS BELOVS AND BEN W. REICHARDT: Span programs and quantum algorithms for
st-connectivity and claw detection. In Proc. 20th Ann. European Symp. on Algorithms (ESA’12),
volume 7501 of LNCS, pp. 193–204, 2012. [doi:10.1007/978-3-642-33090-2_18, arXiv:1203.2603]
405

[6] GILLES BRASSARD, PETER HØYER, MICHELE MOSCA, AND ALAIN TAPP: Quantum am-
plitude amplification and estimation. In Quantum Computation and Quantum Information: A
Millennium Volume, volume 305 of AMS Contemporary Mathematics Series, pp. 53–74, 2002.
[doi:10.1090/conm/305, arXiv:quant-ph/0005055] 404

[7] JOP BRIËT, SOURAV CHAKRABORTY, DAVID GARCÍA-SORIANO, AND ARIE MATSLIAH: Mono-
tonicity testing and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012. Prelimi-
nary versions in RANDOM’10 and ECCC. [doi:10.1007/s00493-012-2765-1] 405

[8] HARRY BUHRMAN AND RONALD DE WOLF: Complexity measures and decision tree complexity:
a survey. Theoret. Comput. Sci., 288(1):21–43, 2002. [doi:10.1016/S0304-3975(01)00144-X] 405

[9] DEEPARNAB CHAKRABARTY AND COMANDUR SESHADHRI: A o(n) monotonicity tester for
boolean functions over the hypercube. In Proc. 45th STOC, pp. 411–418. ACM Press, 2013.
[doi:10.1145/2488608.2488660, arXiv:1302.4536] 404

[10] XI CHEN, ANINDYA DE, ROCCO A. SERVEDIO, AND LI-YANG TAN: Boolean function mono-
tonicity testing requires (almost) n1/2 non-adaptive queries. In Proc. 47th STOC, pp. 519–528. ACM
Press, 2015. [doi:10.1145/2746539.2746570, arXiv:1412.5657] 404, 405

[11] XI CHEN, ROCCO A. SERVEDIO, AND LI-YANG TAN: New algorithms and lower bounds
for monotonicity testing. In Proc. 55th FOCS, pp. 286–295. IEEE Comp. Soc. Press, 2014.
[doi:10.1109/FOCS.2014.38, arXiv:1412.5655] 404, 405

[12] ELDAR FISCHER, ERIC LEHMAN, ILAN NEWMAN, SOFYA RASKHODNIKOVA, RONITT RUBIN-
FELD, AND ALEX SAMORODNITSKY: Monotonicity testing over general poset domains. In Proc.
34th STOC, pp. 474–483. ACM Press, 2002. [doi:10.1145/509907.509977] 405

[13] ODED GOLDREICH, SHAFI GOLDWASSER, ERIC LEHMAN, DANA RON, AND ALEX SAMOROD-
NITSKY: Testing monotonicity. Combinatorica, 20(3):301–337, 2000. Preliminary version in
FOCS’98. [doi:10.1007/s004930070011] 404, 406

[14] PETER HØYER, TROY LEE, AND ROBERT ŠPALEK: Negative weights make adversaries stronger.
In Proc. 39th STOC, pp. 526–535. ACM Press, 2007. [doi:10.1145/1250790.1250867] 406

[15] KAZUO IWAMA, HARUMICHI NISHIMURA, RUDY RAYMOND, AND JUNICHI TERUYAMA: Quan-
tum counterfeit coin problems. Theoret. Comput. Sci., 456:51–64, 2012. Preliminary version in
ISAAC’10. [doi:10.1016/j.tcs.2012.05.039, arXiv:1009.0416] 405

[16] SUBHASH KHOT, DOR MINZER, AND MULI SAFRA: On monotonicity testing and boolean
isoperimetric type theorems. In Proc. 56th FOCS, pp. 52–58. IEEE Comp. Soc. Press, 2015. ECCC
2015/011. [doi:10.1109/FOCS.2015.13] 404, 405, 408

THEORY OF COMPUTING, Volume 11 (16), 2015, pp. 403–412 410

http://dx.doi.org/10.1007/978-3-642-33090-2_18
http://arxiv.org/abs/1203.2603
http://dx.doi.org/10.1090/conm/305
http://arxiv.org/abs/quant-ph/0005055
http://dx.doi.org/10.1007/978-3-642-15369-3_35
http://eccc.hpi-web.de/report/2010/048
http://dx.doi.org/10.1007/s00493-012-2765-1
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1145/2488608.2488660
http://arxiv.org/abs/1302.4536
http://dx.doi.org/10.1145/2746539.2746570
http://arxiv.org/abs/1412.5657
http://dx.doi.org/10.1109/FOCS.2014.38
http://arxiv.org/abs/1412.5655
http://dx.doi.org/10.1145/509907.509977
http://dx.doi.org/10.1109/SFCS.1998.743493
http://dx.doi.org/10.1007/s004930070011
http://dx.doi.org/10.1145/1250790.1250867
http://dx.doi.org/10.1007/978-3-642-17517-6_10
http://dx.doi.org/10.1016/j.tcs.2012.05.039
http://arxiv.org/abs/1009.0416
http://eccc.hpi-web.de/report/2015/011
http://eccc.hpi-web.de/report/2015/011
http://dx.doi.org/10.1109/FOCS.2015.13
http://dx.doi.org/10.4086/toc

QUANTUM ALGORITHM FOR MONOTONICITY TESTING

[17] TROY LEE, FRÉDÉRIC MAGNIEZ, AND MIKLOS SANTHA: Improved quantum query algorithms
for triangle finding and associativity testing. In Proc. 24th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA’13), pp. 1486–1502. ACM Press, 2013. [doi:10.1137/1.9781611973105.107,
arXiv:1210.1014] 405

[18] TROY LEE, RAJAT MITTAL, BEN W. REICHARDT, ROBERT ŠPALEK, AND MARIO SZEGEDY:
Quantum query complexity of state conversion. In Proc. 52nd FOCS, pp. 344–353. IEEE Comp.
Soc. Press, 2011. [doi:10.1109/FOCS.2011.75, arXiv:1011.3020] 405, 406

[19] ASHLEY MONTANARO AND RONALD DE WOLF: A Survey of Quantum Property Testing. Preprint,
2013. To appear as a Theory of Computing Graduate Survey. [arXiv:1310.2035] 404

[20] RYAN O’DONNELL: Analysis of Boolean Functions. Cambridge Univ. Press, 2014. 406

[21] BEN W. REICHARDT: Span programs and quantum query complexity: The general adversary bound
is nearly tight for every boolean function. In Proc. 50th FOCS, pp. 544–551. IEEE Comp. Soc.
Press, 2009. [doi:10.1109/FOCS.2009.55, arXiv:0904.2759] 405, 406

[22] BEN W. REICHARDT: Reflections for quantum query algorithms. In Proc. 22nd Ann.
ACM-SIAM Symp. on Discrete Algorithms (SODA’11), pp. 560–569. ACM Press, 2011.
[doi:10.1137/1.9781611973082.44, arXiv:1005.1601] 406

[23] BEN W. REICHARDT AND ROBERT ŠPALEK: Span-program-based quantum algorithm for eval-
uating formulas. Theory of Computing, 8(13):291–319, 2012. Preliminary version in STOC’08.
[doi:10.4086/toc.2012.v008a013] 405

[24] WIM VAN DAM AND IGOR E. SHPARLINSKI: Classical and quantum algorithms for exponential
congruences. In Proc. 3rd Conf. Theory of Quantum Comput., Communic. and Cryptography
(TQC’08), volume 5106 of LNCS, pp. 1–10. Springer, 2008. [doi:10.1007/978-3-540-89304-2_1,
arXiv:0804.1109] 405

[25] BOHUA ZHAN, SHELBY KIMMEL, AND AVINATAN HASSIDIM: Super-polynomial quantum speed-
ups for Boolean evaluation trees with hidden structure. In Proc. 3rd Symp. Innovations in Theoretical
Computer Science (ITCS’12), pp. 249–265. ACM Press, 2012. [doi:10.1145/2090236.2090258,
arXiv:1101.0796] 405

AUTHORS

Aleksandrs Belovs
Researcher
University of Latvia, Riga, Latvia
stiboh gmail com
http://home.lu.lv/~belovs

THEORY OF COMPUTING, Volume 11 (16), 2015, pp. 403–412 411

http://dx.doi.org/10.1137/1.9781611973105.107
http://arxiv.org/abs/1210.1014
http://dx.doi.org/10.1109/FOCS.2011.75
http://arxiv.org/abs/1011.3020
http://theoryofcomputing.org/libfiles/gradsurveys.html
http://arxiv.org/abs/1310.2035
http://dx.doi.org/10.1109/FOCS.2009.55
http://arxiv.org/abs/0904.2759
http://dx.doi.org/10.1137/1.9781611973082.44
http://arxiv.org/abs/1005.1601
http://dx.doi.org/10.1145/1374376.1374394
http://dx.doi.org/10.4086/toc.2012.v008a013
http://dx.doi.org/10.1007/978-3-540-89304-2_1
http://arxiv.org/abs/0804.1109
http://dx.doi.org/10.1145/2090236.2090258
http://arxiv.org/abs/1101.0796
http://home.lu.lv/~belovs
http://dx.doi.org/10.4086/toc

ALEKSANDRS BELOVS AND ERIC BLAIS

Eric Blais
Assistant professor
University of Waterloo, Waterloo, ON
eric.blais uwaterloo ca
http://www.cs.uwaterloo.ca/~eblais

ABOUT THE AUTHORS

ALEKSANDRS BELOVS is a researcher at the Faculty of Computing, University of Latvia.
He obtained his Master’s degree from the University of Waterloo, and his Ph. D. in 2014
from the University of Latvia under the supervision of Andris Ambainis. Afterwards, he
spent a year as a postdoc at CSAIL, MIT. Currently, he is at CWI, Amsterdam. His main
research area is quantum computing.

ERIC BLAIS is an assistant professor at the University of Waterloo. He completed his Ph. D.
at Carnegie Mellon University. His advisor was Ryan O’Donnell. He was subsequently
a Simons Foundation Postdoctoral Fellow in the Theory of Computation group at MIT.

THEORY OF COMPUTING, Volume 11 (16), 2015, pp. 403–412 412

http://www.cs.uwaterloo.ca/~eblais
http://home.lu.lv/~ambainis/
http://cs.uwaterloo.ca
http://www.cs.cmu.edu
http://www.cs.cmu.edu/~odonnell/
http://toc.csail.mit.edu/
http://dx.doi.org/10.4086/toc

	Introduction
	Adversary bound
	Proof of Theorem 1.1
	References

