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Abstract: We establish a tight NP-hardness result for approximating the SET-COVER

problem based on a strong PCP theorem. Our work implies that it is NP-hard to approximate
SET-COVER on instances of size N to within (1−α) lnN for arbitrarily small α > 0. Our
reduction establishes a tight trade-off between the approximation accuracy α and the running
time exp(NΩ(α)) assuming SAT requires exponential time.

The reduction is obtained by modifying Feige’s reduction. The latter provides a lower
bound of exp(NΩ(α/ log logN)) on the time required for (1− α) lnN-approximating SET-
COVER assuming SAT requires exponential time. The modification uses a combinatorial
construction of a bipartite graph in which any coloring of the first side that does not use a
color for more than a small fraction of the vertices, makes most vertices on the other side
have all their neighbors colored in different colors.

In the conference version of this paper, the SET-COVER result was conditioned on a
conjecture we call “The Projection Games Conjecture” (PGC), a strengthening of the Sliding
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Scale Conjecture of Bellare, Goldwasser, Lund and Russell to projection games (LABEL-
COVER). More precisely, the prerequisite was a quantitative version of this conjecture that
was slightly beyond what was known at the time of the paper’s writing. Shortly afterward,
Dinur and Steurer, based on a result by the author and Raz, proved the quantitative version of
the conjecture sufficient for the SET-COVER result. More broadly, in this paper we discuss
the Projection Games Conjecture and its applications to hardness of approximation, e. g.,
to polynomial hardness factors for the CLOSEST-VECTOR problem and to studying the
behavior of CSPs around their approximability threshold.

1 SET-COVER

In SET-COVER, given a collection of subsets of a base set such that the sets cover all of the base set, the
goal is to find as few of the sets as possible that cover the entire base set.

Definition 1.1 (SET-COVER). The input to SET-COVER consists of a base set U , |U |= n and subsets
S1, . . . ,Sm ⊆U ,

⋃m
j=1 S j = U . The goal is to find as few sets Si1 , . . . ,Sik as possible that cover U , i. e.,⋃k

j=1 Si j =U .

SET-COVER is a classical NP-hard optimization problem. It is equivalent to the HITTING-SET,
HYPERGRAPH-VERTEX-COVER and DOMINATING-SET problems, and is a special case of many other
problems, e. g., GROUP-STEINER-TREE and GROUP-TRAVELING-SALESMAN-PROBLEM.

The greedy algorithm was shown to give a (lnn+ 1)-approximation for SET-COVER [19, 25, 42].
Slavík analyzed the low-order terms of the greedy algorithm, and showed that it in fact obtains an
approximation to within lnn− ln lnn+O(1) [40]. SET-COVER also has a linear programming based
algorithm that gives approximation to within the same factor [41].

Lund and Yannakakis proved that SET-COVER cannot be approximated in polynomial time to
within any factor better than (log2 n)/4, assuming NP 6⊆ DTIME(npoly logn) [26]. By adapting their
construction, Feige changed the leading constant to the right constant, and showed that SET-COVER

cannot be approximated in polynomial time to within (1−α) lnn for any α > 0, assuming NP 6⊆
DTIME(nO(lg lgn)) [14]. (The improvement in the assumption is due to the parallel repetition theorem [36],
proved in the time between the two results.) Under P 6= NP, the best hardness factor known prior to this
work was about 0.2lnn [2], based on the PCP of [37, 6].

Parallel repetition is used by Feige not only to ensure very low error, 1/(logn)O(1), for the PCP, but
also for its unique structure. It was assumed by some that the blow-up incurred by parallel repetition
was inherent to SET-COVER. We show that this is not the case. The following theorem follows from the
reduction presented in this paper together with the parallel repetition of Dinur and Steurer [13].

Theorem 1.2. For every 0 < α < 1, (exact) SAT on inputs of size n can be reduced in polynomial time to
approximating SET-COVER to within (1−α) lnN on inputs of size N = nO(1/α).

The theorem shows that approximating SET-COVER on inputs of size N better than (1−α) lnN is NP-
hard. Interestingly, the N = nO(1/α) blow-up of the reduction is optimal (up to the constant in the O(·)),
assuming that SAT requires exponential time, 2Ω(n) (“The Exponential Time Hypothesis” [18]). This
follows from a slightly subexponential 2O(Nα+poly logN)-time approximation algorithm for (1−α) lnN
approximating SET-COVER [10].
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2 Projection games and the Projection Games Conjecture

In the conference version of this paper [30], Theorem 1.2 was conditioned on a conjecture we call “The
Projection Games Conjecture” (PGC), or, more precisely, on a quantitative version of this conjecture
that was slightly beyond what was known at the time of the paper’s writing. Shortly afterward, Dinur
and Steurer [13], based on a result by the author and Raz [31], proved the quantitative version of the
conjecture sufficient for Theorem 1.2. In this section we discuss the Projection Games Conjecture.

Most of the NP-hardness of approximation results known today (e. g., all of the results in Håstad’s
paper [16]) are based on a PCP Theorem for LABEL-COVER. The input to LABEL-COVER consists of
(i) a bipartite graph G = (A,B,E); (ii) finite alphabets ΣA, ΣB; (iii) constraints (also called projections)
πe : ΣA → ΣB for every edge e ∈ E. The goal is to find assignments to the vertices, ϕA : A→ ΣA,
ϕB : B→ ΣB, that satisfy as many of the edges as possible. We say that an edge e = (a,b) ∈ E is satisfied
if the projection constraint holds, i. e., πe(ϕA(a)) = ϕB(b). We denote the size of the label cover by
n = |A|+ |B|+ |E|. The size of the alphabet is max{|ΣA| , |ΣB|}.

A PCP Theorem for LABEL-COVER with soundness error ε and alphabet size k (where ε and k may
depend on n) states the following [5, 4, 36]:

It is NP-hard, given an input of size n for LABEL-COVER with alphabets of size k, to
distinguish between the case where all edges can be satisfied and the case where at most ε

fraction of the edges can be satisfied.

We can refine this statement by saying that there is a reduction from (exact) SAT to LABEL-COVER,
which maps instances of SAT of size n to instances of LABEL-COVER of size N = n1+o(1) poly(1/ε).
Such PCPs are referred to as “almost-linear size PCP” because of the exponent of n, although for small ε

the blow-up may be super-linear.
Ran Raz and the author proved the following result.

Theorem 2.1 ([32]). There exists c > 0, such that for every ε ≥ 1/Nc, SAT on input of size n can be
reduced to LABEL-COVER of size N for N = n1+o(1) poly(1/ε). The LABEL-COVER is over an alphabet
of size exponential in 1/ε , and has soundness error ε . The reduction can be computed in linear time in
the size and the alphabet size of the LABEL-COVER instance. The LABEL-COVER is on a bi-regular
graph whose degrees are poly(1/ε).

One cannot hope for a soundness error that is lower than 1/N. Hence, the dependence of ε on N is as
low as possible up to the value of the constant c. On the other hand, the alphabet size in Theorem 2.1
is not known to be tight. It can be shown that the alphabet size must be at least 1/ε where ε is the
soundness error (assuming P 6= NP). Moreover, certain PCP constructions—while deficient in other
parameters—have alphabets of size poly(1/ε), see, e. g., [36]. This motivates the conjecture that an
alphabet size of poly(1/ε) could be achieved in Theorem 2.1 as well.

Conjecture 2.2 (Projection Games Conjecture,1 PGC). There exists c > 0, such that for every ε ≥ 1/Nc,
SAT on inputs of size n can be efficiently reduced to LABEL-COVER of size N = n1+o(1) poly(1/ε) over
an alphabet of size poly(1/ε) that has soundness error ε .

1A slightly weaker version of the Projection Games Conjecture is one in which the size of the label cover is polynomial,
N = poly(n,1/ε), rather than almost-linear.
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In almost all applications, one wishes the size and the alphabet size of the LABEL-COVER to be at
most polynomial in n. This happens in Theorem 2.1 only when ε ≥ 1/(logN)b for a constant b > 0. The
PGC, on the other hand, would give polynomial size and polynomial alphabet size for any ε ≥ 1/Nc.

The PGC is the strengthening of the Sliding Scale Conjecture of Bellare, Goldwasser, Lund and
Russell [7] obtained by restricting it to LABEL-COVER (of almost-linear size). “Sliding scale” refers
to the idea that the error can be decreased as we increase the alphabet size. Bellare et al. conjectured
that polynomially small error could be achieved simultaneously with polynomial alphabet, even for two
queries. They did not formulate their conjecture for LABEL-COVER, which was introduced by Arora et
al. [3] around the same time. Today, focusing on the PGC became natural in the PCP community.

Approximation algorithms for LABEL-COVER were designed [34, 9, 27], and the conjecture is
consistent with the state of the art algorithm, giving 1/ε = O( 4

√
Nk) [27]. For PCPs with more than two

queries (corresponding to games on hypergraphs, where the edges carry general predicates rather than
projections), soundness error approaching polynomial, ε = 2−(logN)1−α

for every α > 0, is known [11].
Alas, these PCPs are not for label covers, and the number of queries depends on ε .

Dinur and Steurer show how to achieve soundness error that is poly-logarithmic in N (for any poly-
logarithm) simultaneously with polynomial-sized alphabet, at the cost of increasing the size. This suffices
for the reduction to SET-COVER in Theorem 1.2 to go through. The idea is to apply parallel repetition
on Theorem 2.1, and Dinur and Steurer were the first to successfully analyze parallel repetition for the
relevant parameters.

Theorem 2.3 ([13]). There exists c > 0, such that for every ε ≥ 1/Nc and every k ≥ 1, SAT on input of
size n can be reduced to LABEL-COVER on a bi-regular graph whose size is Nk for N = n1+o(1) poly(1/ε).
The projection game is over an alphabet of size exponential in 1/ε and k, and has soundness error (2ε)k/2.
The reduction can be computed in linear time in the size and the alphabet size of the LABEL-COVER.
The LABEL-COVER is on a bi-regular graph whose degrees are poly(1/εk).

The Projection Games Conjecture has a similar flavor to Khot’s Unique Games Conjecture (UGC) [21];
both assert that low soundness error2 for a special kind of 2-prover games can be obtained for sufficiently
large alphabets. Unique games are the special case of LABEL-COVER in which the projections πe

are one-to-one. Unique games are easier than general projection games. In particular, while there are
constructions of projection games with low soundness error for SAT, we do not know of any constructions
of unique games with almost-perfect completeness3 and bounded soundness error. The two conjectures,
UGC and PGC, seem unrelated: neither would imply the other.

The following variant of the PGC is useful for hardness of approximation.

Definition 2.4 (Linear projection game). A linear LABEL-COVER is LABEL-COVER where the alphabets
are of the form ΣA = Fa, ΣB = Fb, where F is a finite field, and a≥ b are natural numbers. The projections
in the game are affine transformations Fa→ Fb.

2The unique games conjecture only asks for arbitrarily small constant soundness error ε , while the PGC asks for polynomially
small error.

3For unique games, if all the edges can be satisfied simultaneously, then one can find a satisfying assignment in polynomial
time. Hence, we consider the case where almost all edges can be satisfied simultaneously (“almost perfect completeness”).

THEORY OF COMPUTING, Volume 11 (7), 2015, pp. 221–235 224

http://dx.doi.org/10.4086/toc


NP-HARDNESS OF APPROXIMATING SET-COVER

Conjecture 2.5 (Linear PGC). There exists c > 0, such that for every ε ≥ 1/nc, SAT on inputs of size n
can be efficiently reduced to a linear LABEL-COVER of size N = n1+o(1) poly(1/ε) and alphabet size
poly(1/ε). Satisfiable instances of SAT are mapped to LABEL-COVER where 1− ε fraction of the edges
can be satisfied, while unsatisfiable instances of SAT are mapped to LABEL-COVER where at most ε

fraction of the edges can be satisfied.

Note that for linear LABEL-COVER, one can efficiently distinguish the case where all edges can be
satisfied from the case where not all edges can be satisfied—by Gaussian elimination. Therefore, it was
necessary to modify the statement of Conjecture 2.2.

In Section 5 we discuss applications of the PGC and the linear PGC to proving polynomial hardness
factors for the CLOSEST-VECTOR-PROBLEM and to studying the behavior of MAX-3LIN and other
CSPs around their approximability thresholds.

3 Preliminaries

For a set S and a natural number ` we denote by
(S
`

)
the family of all sets of ` elements from S.

We assume without loss of generality that the LABEL-COVER instance in Conjecture 2.2 is bi-regular,
i. e., all the vertices from A have the same degree, which we call the A-degree, and all the vertices
from B have the same degree, which we call the B-degree. We note that any LABEL-COVER instance
can be converted to bi-regular using a technique developed in [32] (“right degree reduction—switching
sides—right degree reduction”), and the cost in the soundness error and graph size does not change the
parameters as stated in Conjecture 2.2.

4 SET-COVER hardness

4.1 The new component

Feige uses the structure obtained from parallel repetition to achieve a LABEL-COVER in which the
soundness guarantee is that very few vertices from B have any two of their neighbors agree on a value for
them.

Definition 4.1 (Total disagreement). Let (G = (A,B,E),ΣA,ΣB,Φ) be a LABEL-COVER instance. Let
ϕA : A→ ΣA be an assignment to the A-vertices. We say that the A-vertices totally disagree on a vertex
b ∈ B if there are no two neighbors a1,a2 ∈ A of b, for which

πe1(ϕA(a1)) = πe2(ϕA(a2)) ,

where e1 = (a1,b),e2 = (a2,b) ∈ E.

Definition 4.2 (Agreement soundness). Let G = (G = (A,B,E),ΣA,ΣB,Φ) be a LABEL-COVER for
deciding whether a Boolean formula φ is satisfiable. We say that G has agreement soundness error ε , if
for unsatisfiable φ , for any assignment ϕA : A→ ΣA, the A-vertices are in total disagreement on at least
1− ε fraction of the b ∈ B.
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Feige used parallel repetition together with a coding theoretic trick to achieve agreement soundness.
We show a different way to achieve agreement soundness. Our construction centers around the following
combinatorial lemma.

Lemma 4.3 (Combinatorial construction). For 0 < ε < 1, for a prime power D, and n that is a power
of D, there is an explicit construction of a regular graph H = (U,V,E) with |U |= n, V -degree D, and
|V | ≤ nO(1) that satisfies the following. For every partition U1, . . . ,U` of U into sets such that |Ui| ≤ ε |U |
for i = 1, . . . , `, the fraction of vertices v ∈V with more than one neighbor in any single set Ui, is at most
εD2.

Note that the combinatorial property could be achieved by a randomized construction, or by a
construction that has a V -vertex per every possible set of D neighbors in U . However, the first construction
is randomized and the second—too wasteful with a size of ≈ |U |D. The lemma can therefore be thought
of as a derandomization of the randomized/full constructions.

Proof of Lemma 4.3. Our graph will be the line-point incidence graph of an affine space over a finite
field. Let U = Fm where F is a finite field of order |F|= D, and m is a natural number. Let V be the set of
all affine lines in Fm. Hence, |V |=

(|U |
2

)
/
(|F|

2

)
. We connect a line v ∈V with a point u ∈U if u lies in v.

Let us show this construction satisfies the desired property. Fix a partition U1, . . . ,U` of U into
tiny sets, |Ui| ≤ ε |U | for i = 1, . . . , `. For every 1≤ i≤ `, the number of V lines that have at least two
neighbors in Ui is at most

(|Ui|
2

)
. Thus the total number of V -vertices with more than one neighbor in a

single Ui is at most

`

∑
i=1

(
|Ui|
2

)
≤

`

∑
i=1

|Ui|2

2

≤max{|Ui| |1≤ i≤ `} ·
`

∑
i=1

|Ui|
2

≤ ε |U | · |U |
2

≤ ε |F|2 |V | .

We show how to take a LABEL-COVER instance with standard soundness and convert it to a LABEL-
COVER instance with total disagreement soundness, by combining it with the graph from Lemma 4.3.

Lemma 4.4. Let D≥ 2 be a prime power and let n be a power of D. Let ε > 0. From a LABEL-COVER

instance with soundness error ε2D2 and B-degree n, we can construct a LABEL-COVER instance with
agreement soundness error 2εD2 and B-degree D. The transformation preserves the alphabets. The size
is raised to a constant power.

Proof. Let G = (G = (A,B,E),ΣA,ΣB,Φ) be the original LABEL-COVER. Let H = (U,V,EH) be the
graph from Lemma 4.3, where n, D and ε are as given in the current lemma. Let us use U to enumerate
the neighbors of a B-vertex, i. e., there is a function E← : B×U → A that given a vertex b ∈ B and u ∈U ,
gives us the A-vertex which is the u neighbor of b.
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We create a new LABEL-COVER (G = (A,B×V,E ′),ΣA,ΣB,Φ
′). The intended assignment to every

vertex a ∈ A is the same as its assignment in the original instance. The intended assignment to a vertex
〈b,v〉 ∈ B×V is the same as the assignment to b in the original game. We put an edge e′ = (a,〈b,v〉) if
E←(b,u) = a and (u,v) ∈ EH . We define πe′ ≡ π(a,b).

If there is an assignment to the original instance that satisfies c fraction of its edges, then the
corresponding assignment to the new instance satisfies c fraction of its edges.

Suppose there is an assignment for the new instance ϕA : A→ ΣA in which more than 2εD2 fraction
of the vertices in B×V do not have total disagreement.

Let us say that b ∈ B is “good” if for more than an εD2 of the vertices in {b}×V the A-vertices do
not totally disagree. Note that the fraction of good b ∈ B is at least εD2.

Focus on a good b ∈ B. Consider the partition of U into |ΣB| sets, where the set corresponding to
σ ∈ ΣB is:

Uσ = {u ∈U |a = E←(b,u)∧ e = (a,b)∧πe(ϕA(a)) = σ} .

By the goodness of b and the property of H, there must be σ ∈ ΣB such that |Uσ |> ε |U |. We call σ the
“champion” for b.

We define an assignment ϕB : B→ ΣB that assigns good vertices b their champions, and other vertices
b arbitrary values. The fraction of edges that ϕA,ϕB satisfy in the original instance is at least ε2D2.

Next we consider a variant of LABEL-COVER that is relevant for the reduction to SET-COVER. In this
variant the prover is allowed to assign each vertex ` values, and an agreement is interpreted as agreement
on one of the assignments in the list.

Definition 4.5 (List total disagreement). Let (G = (A,B,E),ΣA,ΣB,Φ) be a LABEL-COVER. Let `≥ 1.
Let ϕ̂A : A→

(
ΣA
`

)
be an assignment that assigns each A-vertex ` alphabet symbols. We say that the

A-vertices totally disagree on a vertex b ∈ B if there are no two neighbors a1,a2 ∈ A of b, for which there
exist σ1 ∈ ϕ̂A(a1), σ2 ∈ ϕ̂A(a2), such that

πe1(σ1) = πe2(σ2) ,

where e1 = (a1,b),e2 = (a2,b) ∈ E.

Definition 4.6 (List agreement soundness). Let (G = (A,B,E),ΣA,ΣB,Φ) be a LABEL-COVER for
deciding membership whether a Boolean formula φ is satisfiable. We say that G has list-agreement
soundness error (`,ε), if for unsatisfiable φ , for any assignment ϕ̂A : A→

(
ΣA
`

)
, the A-vertices are in total

disagreement on at least 1− ε fraction of the b ∈ B.

If a PCP has low error ε , then even when the prover is allowed to assign each A-vertex ` values, the
game is still sound. This is argued in the next corollary.

Lemma 4.7 (LABEL-COVER with list-agreement soundness). Let `≥ 1, 0 < ε ′ < 1. A LABEL-COVER

with agreement soundness error ε ′ has list-agreement soundness error (`,ε ′`2).

Proof. Assume by way of contradiction that the LABEL-COVER instance has an assignment ϕ̂A : A→
(

ΣA
`

)
such that on more than ε ′`2 fraction of the B-vertices, the A-vertices do not totally disagree. Define an
assignment ϕA : A→ ΣA by assigning every vertex a ∈ A a symbol picked uniformly at random from the `
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symbols in ϕ̂A(a). If a vertex b ∈ B has two neighbors a1,a2 ∈ A that agree on b under the list assignment
ϕ̂A, then the probability that they agree on b under the assignment ϕA is at least 1/`2. Thus, under ϕA, the
expected fraction of the B-vertices that have at least two neighbors that agree on them, is more than ε ′. In
particular, there exists an assignment to the A-vertices, such that more than ε ′ fraction of the B-vertices
have two neighbors that agree on them. This contradicts the agreement soundness.

The following statement summarizes the above.

Corollary 4.8. For any `= `(n)= poly logn, for any constant prime power D≥ 2 and constant 0<α < 1,
SAT on input of size n can be reduced to a LABEL-COVER instance of size N = poly(n) with alphabet
size poly(n), where the B-degree is D, and the list-agreement soundness error is (`,α).

Proof. Our starting point is the LABEL-COVER from Theorem 2.3 with soundness error (2ε)k/2 so√
(2ε)k/2 ≤ α/2(D`)2. We apply Lemma 4.4 and Lemma 4.7.

4.2 Following Feige’s reduction

In the remainder, we will show how to use Corollary 4.8 to obtain the desired hardness result for
SET-COVER. The reduction is along the lines of Feige’s original reduction.

For the reduction we rely on a combinatorial construction by Naor, Schulman, and Srinivasan [33].
They construct a universe together with partitions of it. Each partition covers the universe, but any cover
that uses at most one set out of each partition, is necessarily large. A formal statement follows.

Lemma 4.9 (Partition system). For natural numbers m, D and 0 < α < 1, for all u≥ (DO(logD) logm)1/α ,
there is an explicit construction of a universe U of size u and partitions P1, . . . ,Pm of U into D sets that
satisfy the following: there is no cover of U with `= D ln |U |(1−α) sets Si1 , . . . ,Si` , 1≤ i1 < · · ·< i` ≤m,
such that set Si j belongs to partition Pi j .

We will use the contrapositive of the lemma: if U has a cover of size at most `, then this cover
must contain at least two sets from the same partition. The choice of parameters of interest to us is the
following: m is at most polynomial in n (m will be |ΣB| of the projection game), D is a sufficiently large
constant, and α is a small constant.

To see why `= D ln |U |(1−α) is to be expected (this later determines the hardness factor we get),
think of the following randomized construction: each element in U corresponds to a vector in [D]m,
specifying for each of the m partitions, to which of its D sets it belongs. Consider a uniformly random
choice of such a vector. Fix any Si1 , . . . ,Si` . The probability that a random element is not covered by
Si1 , . . . ,Si` is (1−1/D)` ≈ e−`/D. When `= D ln |U |(1−α), we have e−`/D ≥ 1/ |U |, and we expect one
of the |U | elements in U not to be covered by Si1 , . . . ,Si` . The construction of “anti-universal sets” in [33]
derandomizes this randomized construction. This is the mapping from our notation to the notation in [33]:
m→ n, D→ b, `→ k, U is the anti-universal set.

We now describe the reduction from a LABEL-COVER G as in Corollary 4.8, to a SET-COVER

instance SCG.
Apply Lemma 4.9 for m = |ΣB| and D which is the B-degree of the LABEL-COVER. The parameter u

will be determined later. Let U be the universe, and Pσ1 , . . . ,Pσm be the partitions of U . We index the
partitions by ΣB symbols σ1, . . . ,σm. The elements of the SET-COVER instance are B×U . Equivalently,
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each vertex b ∈ B has a copy of the universe U . Covering this universe corresponds to satisfying the
edges that touch b. There are m ways to satisfy the edges that touch b—one for every possible assignment
σ ∈ ΣB to b. The different partitions covering U correspond to those different assignments.

For every vertex a ∈ A and an assignment σ ∈ ΣA to a we have a set Sa,σ in the SET-COVER instance.
Taking Sa,σ to the cover would correspond to assigning σ to a. Notice that a cover might consist of
several sets of the form Sa,· for the same a ∈ A, which is the reason we consider list agreement. The set
Sa,σ is a union of subsets, one for every edge e = (a,b) touching a. Suppose e is the i-th edge coming
into b (1≤ i≤ D), then the subset associated with e is {b}×S, where S is the i-th subset of the partition
Pϕe(σ).

If we have an assignment to the A-vertices, such that all of the neighbors of b agree on one value for
b, then the D subsets corresponding to those neighbors and their assignments form a partition that covers
b’s universe. On the other hand, if one uses only sets that correspond to totally disagreeing assignments
to the neighbors, then by the definition of the partitions, covering U requires ≈ ln |U | times more sets.
Formally, we prove the following.

Claim 4.10. The following hold:

• Completeness: If all the edges in G can be satisfied, then SCG has a set cover of size |A|.

• Soundness: Let ` .
= D ln |U |(1−α) be as in Lemma 4.9. If G has agreement soundness (`,α), then

every set cover of SCG is of size more than |A| ln |U |(1−2α).

Proof. Completeness follows from taking the set cover corresponding to each of the A-vertices and its
satisfying assignment.

Let us prove soundness. Assume by way of contradiction that there is a set cover C of SCG of size
at most |A| ln |U |(1− 2α). For every a ∈ A let sa be the number of sets in C of the form Sa,·. Hence,
∑a∈A sa = |C|. For every b ∈ B let sb be the number of sets in C that participate in covering {b}×U .
Then, denoting the A-degree of G by DA,

∑
b∈B

sb = ∑
a∈A

saDA ≤ DA |A| ln |U |(1−2α) = D |B| ln |U |(1−2α) .

In other words, on average over the b∈B, the universe {b}×U is covered by at most D ln |U |(1−2α) sets.
Therefore, by Markov’s inequality, the fraction of b ∈ B whose universe {b}×U is covered by at most
D ln |U |(1−α) = ` sets is at least α . By the contrapositive of Lemma 4.9 and our construction, for such
b ∈ B, there are two edges e1 = (a1,b),e2 = (a2,b) ∈ E with Sa1,σ1 ,Sa2,σ2 ∈C where πe1(σ1) = πe2(σ2).

We define an assignment ϕ̂A : A→
(

ΣA
`

)
to the A-vertices as follows. For every a ∈ A pick ` different

symbols σ ∈ ΣA from those with Sa,σ ∈C (add arbitrary symbols if there are not enough). As we showed,
for at least α fraction of the b ∈ B, the A-vertices will not totally disagree.

Proof of Theorem 1.2. Fix a constant 0 < α < 1 and a prime power D. For a sufficiently large `′ =
Θ(logn), let G= (G = (A,B,E),ΣA,ΣB,Φ) be the LABEL-COVER with list-agreement soundness (`′,α)

obtained from Corollary 4.8. We take u = |U | = Θ(|B|1/α), so u ≥ (DO(logD) log |ΣB|)1/α as required
for Lemma 4.9. Let ` = D lnu(1−α) ≤ `′. The inapproximability ratio we get for SET-COVER from
Claim 4.10 is (1− 2α) ln |U |. Let N = |U | |B| be the number of elements in SCG. We have lnN =
(1+α) ln |U |. The inapproximability ratio is at least (1−3α) lnN. Note that the reduction is polynomial
in |A|, |ΣA|, |B|, |ΣB| and |U |. Hence, the reduction is polynomial in n. This proves Theorem 1.2.
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5 Applications of the Projection Games Conjecture

In this section we describe a few applications of the PGC to hardness of approximation.

5.1 The CLOSEST-VECTOR-PROBLEM

The CLOSEST-VECTOR-PROBLEM (CVP) is to find, given a basis b1, . . . ,bn ∈Rn and a point x ∈Rn, the
closest point to x—with respect to the `2 distance—in the lattice spanned by b1, . . . ,bn, i. e., in{

n

∑
i=1

αibi

∣∣∣∣∣α1, . . . ,αn ∈ Z

}
.

Lattice problems like CVP are quite natural and have been studied a lot. One of the motivations
for studying them comes from cryptography, where encryption systems believed to be secure even
against quantum adversaries were built assuming the worst-case hardness of approximating lattice
problems. The inapproximability factors known to be useful for cryptography are as large as Ω̃(n) for
constructing collision resistant hash functions and one-way functions [29], and Ω(n2) for public-key
cryptography [38], but it is unlikely that such an approximation is NP-hard, as it (and in fact any NP-
hardness of approximation to within c

√
n for some constant c > 0) would result in a collapse of the

polynomial hierarchy [1]. For more details see [28, 39].
A central question is whether one can show that lattice problems are NP-hard to approximate to

within some polynomial factors�
√

n. The best existing NP-hardness result for CVP is for a factor of
exp((logn)1−α) for any constant α > 0 (and even for certain α = o(1)) [12]. Assuming the PGC, we can
obtain hardness of approximating CVP up to polynomial factors by a reduction of Arora, Babai, Stern
and Sweedyk [3]. We state the theorem as stated by Khot [23].

Theorem 5.1 (CVP Hardness). Given a LABEL-COVER G= (G= (A,B,E),ΣA,ΣB,Φ) one can construct
in poly(N) time a lattice L in RN and a point x∈RN where N = |A| |ΣA|+ |B| |ΣB|, such that the following
hold.

• Completeness: If there is an assignment to the vertices of G that satisfies all of its edges, then the
distance between x and L is at most

√
2 |A| |B|.

• Soundness: If there is no assignment to the vertices of G that satisfies even ε fraction of its edges,
then the distance of x and L is at least 0.1

√
|A| |B|/ε .

Hence, assuming the PGC, there exists c > 0, such that approximating CLOSEST-VECTOR-PROBLEM to
within Nc on an N-dimensional lattice is NP-hard.

5.2 Around the approximability thresholds of CSPs

Constraint Satisfaction Problems (CSP) are defined by a set of variables v1, . . . ,vn, an alphabet Σ, and
constraints ϕ1, . . . ,ϕm, each depending on q variables. The number q = O(1) is called the arity of the
CSP. The task is to find an assignment to the variables that maximizes the number of satisfied constraints.
One obtains specific CSPs by restricting the type of constraints. Examples include MAX-3SAT, where
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one is given 3CNF clauses on Boolean variables, and MAX-qLIN, where one is given linear equations
over GF(2).

CSPs have been studied a lot in hardness of approximation, and for many of them we know sharp
approximability thresholds. In fact, assuming the Unique Games Conjecture, we know that all CSPs over
constant-sized alphabets have thresholds, where they pass from admitting polynomial time algorithms to
being NP-hard [35]. For specific problems like MAX-3LIN, we know even sharper results:

Theorem 5.2 (Hardness of MAX-3LIN [16, 20]). Linear LABEL-COVER on inputs of size n and
soundness/completeness error ε can be reduced to distinguishing, given a MAX-3LIN instance of
size N = npoly(1/ε), between the case that (1− ε ′) fraction of the equations can be satisfied, and the
case where no assignment satisfies more than (1/2+ ε ′) fraction of the equations, where ε = poly(ε ′).
The reduction is linear in N.

Hence, assuming the linear PGC, approximating MAX-3LIN to within 1/2+1/Nc for some constant
c > 0 is NP-hard.

Note that a random assignment to the variables satisfies half of the equations in expectation, and
one can always find in deterministic polynomial time an assignment that satisfies at least half of the
equations. The theorem says that approximating MAX-3LIN transitions from being easy to being hard
within a window of ε ′ at 1/2. The width ε ′ determines how sharp the phase transition is. Note that at
1/2+1/No(1) the approximation problem is (essentially) exponentially hard assuming the exponential
time hypothesis and the linear PGC. This matches an approximation algorithm by Håstad [15].

Theorem 5.2 is proved by using the Hadamard code as in [20] instead of the long code as in [16].
The advantage of the reduction in [16] is that it allows one to start with (non-linear) LABEL-COVER.
Its disadvantage is that it incurs a blow-up of N = nexp(1/ε). Using [16] and Theorem 2.1, the current
record, not assuming the linear PGC, is ε ′ = 1/(log logN)O(1).

Results analogous to Theorem 5.2 hold for other CSPs as well, e. g., for MAX-3LIN over larger finite
fields, for MAX-3SAT and for other problems from Håstad’s paper [16].

6 Open Problems

The main open problem is to prove (or disprove) the Projection Games Conjecture.
We believe that many more hardness of approximation results could be proved based on the PGC.

Here are some concrete open problems in this direction.

1. Prove a theorem similar to Theorem 5.2 for satisfiable instances of MAX-3SAT.

2. Prove PGC-based hardness results for large families of CSPs similar to what is known under the
Unique Games Conjecture for all CSPs [35]. A significant step in this direction was recently taken
by Chan [8].

3. Prove a PGC-based hardness result for approximating SHORTEST-VECTOR-PROBLEM to within
polynomial factors. Note that there is a quasi-polynomial reduction from CLOSEST-VECTOR-
PROBLEM to SHORTEST-VECTOR-PROBLEM [22, 17] (see survey [23]).
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4. Prove a PGC-based hardness result for approximating CLIQUE to within N/poly logN. Note that
there is a quasi-polynomial reduction from MAX-3LIN to CLIQUE [20, 24].

Another open problem is to show equivalence between the PGC and the linear PGC.
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