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Abstract: In this paper we present a randomized polynomial-time approximation algorithm
for MAX-k-CSPd . In MAX-k-CSPdwe are given a set of predicates of arity k over an
alphabet of size d. Our goal is to find an assignment that maximizes the number of satisfied
constraints.

Our algorithm has approximation factor Ω(kd/dk) (when k ≥Ω(logd)). The best previ-
ously known algorithm has approximation factor Ω(k logd/dk). Our bound is asymptotically
optimal when d = Ω(d).

We also give an approximation algorithm for the Boolean MAX-k-CSP2 problem with a
slightly improved approximation guarantee.
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1 Introduction

We design an approximation algorithm for MAX-k-CSPd , the maximum constraint satisfaction problem
with k-ary predicates and domain size d. In this problem, we are given a set {xu}u∈X of variables and a
set P of predicates. Each variable xu takes values in [d] = {1, . . . ,d}. Each predicate P ∈ P depends on
at most k variables. Our goal is to assign values to variables so as to maximize the number of satisfied
constraints.
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There has been a lot of interest in finding the approximability of MAX-k-CSPd in the complexity
community motivated by the connection of MAX-k-CSPd to k-bit PCPs. Let us briefly review the known
results. Samorodnitsky and Trevisan [12] showed that the Boolean MAX-k-CSP2 problem cannot be
approximated within a factor of Ω(22

√
k/2k) if P 6= NP. Later Engebretsen and Holmerin [7] improved

this bound to Ω(2
√

2k/2k). For non-Boolean MAX-k-CSPd , Engebretsen [6] proved a hardness result
of dO(

√
k)/dk. Much stronger inapproximability results were obtained assuming the Unique Games

Conjecture (UGC). Samorodnitsky and Trevisan [13] proved the hardness of O(k/2k) for the Boolean
MAX-k-CSP2. Austrin and Mossel [1] and, independently, Guruswami and Raghavendra [8] proved the
hardness of O(kd2/dk) for non-Boolean MAX-k-CSPd . Moreover, Austrin and Mossel [1] proved the
hardness of O(kd/dk) for every d and infinitely many k; specifically, their result holds for d and k such
that k = (dt −1)/(d−1) for some t ∈ N. Based on this result of Austrin and Mossel and our matching
algorithmic result (see below), we made a conjecture that the hardness of O(kd/dk) holds for every d and
all sufficiently large k. Håstad proved this conjecture—he strengthened the result of Austrin and Mossel
and showed the hardness of O(kd/dk) for every d and k ≥ d. With his permission, we present his result
in Section 8. Later Chan [2] proved the hardness of O(kd/dk) for every d and k ≥ d assuming only that
P 6= NP.

On the positive side, approximation algorithms for the problem have been developed in a series
of papers by Trevisan [14], Hast [9], Charikar, Makarychev and Makarychev [4], and Guruswami and
Raghavendra [8]. The best currently known algorithm for k-CSPd by Charikar et al. [4] has approximation
factor of Ω(k logd/dk). Note that a trivial algorithm for MAX-k-CSPd that just picks a random assignment
satisfies each constraint with probability at least 1/dk, and therefore its approximation ratio is 1/dk.

The problem is essentially settled in the Boolean case. We know that the optimal approximation
factor is Θ(k/2k) assuming P 6= NP. However, the best known lower and upper bounds for the non-
Boolean case do not match. In this paper we present an approximation algorithm for non-Boolean
MAX-k-CSPd with approximation factor Ω(kd/dk) (for k ≥Ω(logd)). This algorithm is asymptotically
optimal (when k ≥ d)—it is within a constant factor of the upper bounds of Austrin and Mossel [1],
Håstad (see Section 8), and Chan [2]. Our result improves the best previously known approximation
factor of Ω(k logd/dk).

Related work. Raghavendra studied a more general MAX-CSP(P) problem [11].
He showed that the optimal approximation factor equals the integrality gap of the standard SDP

relaxation for the problem (assuming UGC). His result applies in particular to MAX-k-CSPd . However,
the SDP integrality gap of MAX-k-CSPd is not known.

Overview. We use semidefinite programming (SDP) to solve the problem. In our SDP relaxation,
we have an “indicator vector” ui for every variable xu and value i; we also have an “indicator vector” zC

for every constraint C. In the intended solution, ui is equal to a fixed unit vector e if xu = i, and ui = 0 if
xu 6= i; similarly, zC = e if C is satisfied, and zC = 0, otherwise.

It is interesting that the best previously known algorithm for the problem [4] did not use this SDP
relaxation; rather it reduced the problem to a Boolean MAX-k-CSPproblem, which it solved in turn
using semidefinite programming. The only previously known algorithm [8] that directly rounded an SDP
solution for MAX-k-CSPd had approximation factor Ω

(
k/d7/dk

)
.

One of the challenges of rounding the SDP solution is that the vectors ui might have different lengths.
Consequently, we cannot just use a rounding scheme that projects vectors on a random direction and
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then chooses vectors that have largest projections, since this scheme will choose longer vectors with
disproportionately large probabilities. (In fact, if we apply this rounding scheme, we will get an Ω(k/dk)
approximation, which is worse than the Ω(k logd/dk) approximation of [4].) To deal with this problem,
we first develop a rounding scheme that rounds uniform SDP solutions, solutions in which all vectors
are “short.” Then we construct a randomized reduction that converts any instance to an instance with a
uniform SDP solution.

Our algorithm for the uniform case is very simple. First, we choose a random Gaussian vector g.
Then, for every u, we find ui that has the largest projection on g (in absolute value), and let xu = i.
However, the analysis of this algorithm is quite different from analyses of similar algorithms for other
problems (e. g., [10, 3, 5]): when we estimate the probability that a constraint C is satisfied, we have
to analyze the correlation of all vectors ui with vector zC (where {ui} are SDP vectors for variables xu

that appear in C, zC is the SDP vector for C), whereas the standard approach would be to look only at
pairwise correlations of vectors {ui}; this approach does not work in our case, however, since vectors
corresponding to an assignment that satisfies C may have very small pairwise correlations, but vectors
corresponding to assignments that do not satisfy C may have much larger pairwise correlations.

Remark 1.1. We study the problem only in the regime when k ≥Ω(logd). In Theorem 5.1, we prove
that when k = O(logd) our algorithm has approximation factor eΩ(k)/dk. However, in this regime, there
is a very simple greedy approximation algorithm that has a better approximation factor of Ω(d/dk). For
completeness, we present this algorithm in Section 9.

Other Results. We also apply our SDP rounding technique to the Boolean MAX-k-CSPProblem.
We give an algorithm that has approximation guarantee ≈ 0.62k/2k for sufficiently large k. That slightly
improves the best previously known guarantee of ≈ 0.44k/2k [4]. We present this result in Section 6.

In Section 2, we formally define the problem and present our SDP relaxation. In Section 3, we give
an algorithm for rounding uniform SDP solutions. In Section 4, we present a reduction that reduces an
arbitrary instance to an instance with a uniform solution. In Section 5, we put all pieces of our algorithm
together and prove Theorem 5.1, the main result of this paper. In Section 6, we apply our techniques to
Boolean MAX-k-CSP. In Section 7, we prove an inequality for Gaussian random variables, which we use
in the analysis of the algorithm (we use this inequality in Section 3; however, we choose to describe its
proof in Section 7 since the proof is elementary but technical). In Section 8, we present Håstad’s hardness
result for MAX-k-CSPd . Finally, in Section 9, we present a simple greedy approximation algorithm for
MAX-k-CSPd that performs better than our SDP algorithm when k = O(logd).

2 Preliminaries

We apply the approximation preserving reduction of Trevisan [14] to transform a general instance of
MAX-k-CSPd to an instance where each predicate is a conjunction of terms of the form xu = i. The
reduction replaces a predicate P, which depends on variables xv1 , . . . , xvk , with a set of clauses

{(xv1 = i1)∧·· ·∧ (xvk = ik) : P(i1, . . . , ik) is true} .

Then it is sufficient to solve the obtained instance. We refer the reader to [14] for details. We assume
below that each predicate is a clause of the form (xv1 = i1)∧·· ·∧ (xvk = ik).
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Definition 2.1 (Constraint satisfaction problem). An instance I of MAX-CSPd consists of

• a set X of “indices,”

• a set {xu}u∈X of variables (there is one variable xu for every index u ∈ X),

• a set C of clauses.

Each variable xu takes values in the domain [d] = {1, . . . ,d}. Each clause C ∈ C is a set of pairs (u, i)
where u ∈ X and i ∈ [d]. An assignment x = x∗ satisfies a clause C if, for every (u, i) ∈C, we have x∗u = i.
We assume that no clause C in C contains pairs (u, i) and (u, j) with i 6= j (no assignment satisfies such
clause). The length of a clause C is |C|. The support of C is supp(C) = {u : (u, i) ∈C}.

The value of an assignment x∗ is the number of constraints in C satisfied by x∗. Our goal is to find an
assignment of maximum value. We denote the value of an optimal assignment by OPT = OPT(I).

In the MAX-k-CSPd problem, we additionally require that all clauses in C have length at most k.

We consider the following semidefinite programming (SDP) relaxation for MAX-CSPd . For every
index u ∈ X and i ∈ [d], we have a vector variable ui; for every clause C, we have a vector variable zC.

maximize: ∑
C∈C
‖zC‖2

subject to:
d

∑
i=1
‖ui‖2 ≤ 1 for every u ∈ X ,

〈ui,u j〉= 0 for every u ∈ X , i, j ∈ [d] (i 6= j),

〈ui,zC〉= ‖zC‖2 for every C ∈ C, (u, i) ∈C,

〈u j,zC〉= 0 for every C ∈ C, (u, i) ∈C and j 6= i.

Denote the optimal SDP value by SDP = SDP(I). Consider the optimal solution x∗ to an instance I and
the corresponding SDP solution defined as follows:

ui =

{
e, if x∗u = i;
0, otherwise;

zC =

{
e, if C is satisfied;
0, otherwise;

where e is a fixed unit vector. It is easy to see that this is a feasible SDP solution and its value equals
OPT(I). Therefore, SDP(I)≥ OPT(I).

Definition 2.2. We say that an SDP solution is uniform if ‖ui‖2 ≤ 1/d for every u ∈ X and i ∈ [d].

Definition 2.3. Let ξ be a standard Gaussian variable with mean 0 and variance 1. We denote

Φ(t) = Pr(|ξ | ≤ t) =
1√
2π

∫ t

−t
e−x2/2dx , and

Φ̄(t) = 1−Φ(t) = Pr(|ξ |> t) .
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We will use the following lemma, which we prove in Section 7.

Lemma 2.4. For every t > 0 and β ∈ (0,1] , we have

Φ̄(β t)≤ Φ̄(t)β 2
.

We will also use the following result of Šidák [15].

Theorem 2.5 (Šidák [15]). Let ξ1, . . . ,ξr be jointly Gaussian random variables with mean zero and an
arbitrary covariance matrix. Then for any positive t1, . . . , tr,

Pr(|ξ1| ≤ t1, |ξ2| ≤ t2, . . . , |ξr| ≤ tr)≥
r

∏
i=1

Pr(|ξi| ≤ ti) .

3 Rounding uniform SDP solutions

In this section we present a rounding scheme for uniform SDP solutions.

Lemma 3.1. There is a randomized polynomial-time algorithm that given an instance I of the MAX-
CSPd problem (with d ≥ 57) and a uniform SDP solution, outputs an assignment x such that for every
clause C ∈ C:

Pr(C is satisfied by x)≥ min(‖zC‖2|C|d/8,e|C|)
2d|C|

.

Proof. We use the rounding algorithm described in Figure 1 below.

Rounding Scheme for Uniform SDP solutions
Input: an instance of the MAX-CSPd problem and a uniform SDP solution.
Output: an assignment x.

• Choose a random Gaussian vector g so that every component of g is distributed as a Gaussian
variable with mean 0 and variance 1, and all components are independent.

• For every u ∈ X , let x′u = argmaxi |〈ui,g〉|.
• For every u ∈ X , choose x′′u uniformly at random from [d] (independently for different u).

• With probability 1/2 return assignment x′; with probability 1/2 return assignment x′′.

Figure 1: Rounding Scheme for Uniform SDP solutions.

For every clause C, let us estimate the probabilities that assignments x′ and x′′ satisfy C. It is clear that
x′′ satisfies C with probability d−|C|. We prove now that x′ satisfies C with probability at least d−3|C|/4 if
‖zC‖2 ≥ 8/(|C|d).

THEORY OF COMPUTING, Volume 10 (13), 2014, pp. 341–358 345

http://dx.doi.org/10.4086/toc


KONSTANTIN MAKARYCHEV AND YURY MAKARYCHEV

Claim 3.2. Suppose C ∈ C is a clause such that ‖zC‖2 ≥ 8/(|C|d) and d ≥ 57. Then the probability that
the assignment x′ satisfies C is at least d−3|C|/4.

Proof. Denote s = |C|. We assume without loss of generality that for every u ∈ supp(C), (u,1) ∈ C.
Note that for (u, i) ∈C, we have ‖zC‖2 = 〈zC,ui〉 ≤ ‖zC‖ · ‖ui‖ ≤ ‖zC‖/

√
d (here we use that the SDP

solution is uniform and therefore ‖ui‖2 ≤ 1/d). Thus ‖zC‖2 ≤ 1/d. In particular, s = |C| ≥ 8 since
‖zC‖2 ≥ 8/(|C|d).

For every u∈ supp(C), let u⊥1 = u1−zC. Let γu,1 = 〈g,u⊥1 〉 and γu,i = 〈g,ui〉 for i≥ 2. Let γC = 〈g,zC〉.
All variables γu,i,γC are jointly Gaussian random variables. Using that for every two vectors v and w,
E [〈g,v〉 · 〈g,w〉] = 〈v,w〉, we get

E [γC · γu,1] = 〈zC,u1− zC〉= 〈zC,u1〉−‖zC‖2 = 0;

E [γC · γu,i] = 〈zC,ui〉= 0 for i≥ 2.

Therefore, all variables γu,i are independent from γC. (However, for u′,u′′ ∈ supp(C) variables γu′,i and
γu′′, j are not necessarily independent.) Let M = Φ̄−1(1/ds/2)/

√
sd/8. We write the probability that x′

satisfies C,

Pr
(
x′ satisfies C

)
= Pr

(
argmaxi |〈g,ui〉|= 1 for every u ∈ supp(C)

)
= Pr(|〈g,u1〉|> |〈g,ui〉| for every u ∈ supp(C), i ∈ {2, . . . ,d})
= Pr(|γu,1 + γC|> |γu,i| for every u ∈ supp(C), i ∈ {2, . . . ,d})
≥ Pr(|γu,1| ≤M/2, and |γu,i| ≤M/2

for every u ∈ supp(C), i ∈ {2, . . . ,d}
∣∣ |γC|> M) ·Pr(|γC|> M) .

Since all variables γu,i are independent from γC,

Pr
(
x′ satisfies C

)
≥ Pr(|γu,i| ≤M/2 for every u ∈ supp(C), i ∈ {1, . . . ,d}) ·Pr(|γC|> M) .

By Šidák’s Theorem (Theorem 2.5), we have

Pr
(
x′ satisfies C

)
≥
(

∏
u∈supp(C)

d

∏
i=1

Pr(|γu,i| ≤M/2)
)
·Pr(|γC|> M) . (3.1)

We compute the variance of vectors γu,i. We use that Var[〈g,v〉] = ‖v‖2 for every vector v and that the
SDP solution is uniform.

Var[γu,1] = ‖u⊥1 ‖2 = ‖u1− zC‖2 = ‖u1‖2−2〈u1,zC〉+‖zC‖2 = ‖u1‖2−‖zC‖2 ≤ ‖u1‖2 ≤ 1/d ;

Var[γu,i] = ‖ui‖2 ≤ 1/d for i≥ 2 .

Hence since Φ(t) is an increasing function and Φ̄(β t)≤ Φ̄(t)β 2
(by Lemma 2.4), we have

Pr(|γu,i| ≤M/2) = Φ(M/(2
√

Var[γu,i]))≥Φ(
√

dM/2) = 1− Φ̄(
√

d M/2)

≥ 1− Φ̄(
√

sd/8M)2/s = 1− (d−s/2)2/s = 1−d−1
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(recall that we defined M so that Φ̄(
√

sd/8M) = d−s/2). Similarly, Var[γC] = ‖zC‖2 ≥ 8/(sd) (by the
condition of the lemma). We get (using the fact that Φ̄(t) is a decreasing function),

Pr(|γC|> M) = Φ̄(M/
√

Var[γC])≥ Φ̄(M
√

sd/8) = d−s/2 .

Plugging in bounds for Pr(|γu,i| ≤M/2) and Pr(|γC|> M) into (3.1), we obtain

Pr
(
x′ satisfies C

)
≥ (1−d−1)dsd−s/2 ≥ d−3s/4 .

Here, we used that (1−d−1)d ≥ d−1/4 for d ≥ 57 (the inequality (1−d−1)d ≥ d−1/4 holds for d ≥ 57
since it holds for d = 57 and the left hand side, (1−d−1)d , is an increasing function, the right hand side,
d−1/4, is a decreasing function).

We conclude that if ‖zC‖2 ≤ 8/(|C|d) then the algorithm chooses assignment x′′ with probability
1/2 and this assignment satisfies C with probability at least 1/d|C| ≥ ‖zC‖2 |C|d/(8d|C|). So C is
satisfied with probability at least, 1/d|C| ≥ ‖zC‖2 |C|d/(16d|C|); if ‖zC‖2 ≥ 8/(|C|d) then the algorithm
chooses assignment x′ with probability 1/2 and this assignment satisfies C with probability at least
d−3|C|/4 ≥ e|C|/d|C| (since e≤ 571/4 ≤ d1/4). In either case,

Pr(C is satisfied)≥ min(‖zC‖2|C|d/8,e|C|)
2d|C|

.

Remark 3.3. We note that we did not try to optimize all constants in the statement of Lemma 3.1. By
choosing all parameters in our proof appropriately, it is possible to show that for every constant ε > 0,
there is a randomized rounding scheme, δ > 0 and d0 such that for every instance of MAX-CSPd with
d ≥ d0 the probability that each clause C is satisfied is at least min((1− ε)‖zC‖2 · |C|d,δ · eδ |C|)/d|C|.

4 Rounding arbitrary SDP solutions

In this section we show how to round an arbitrary SDP solution.

Lemma 4.1. There is a randomized polynomial-time algorithm that given an instance I of the MAX-
CSPd problem (with d ≥ 113) and an SDP solution, outputs an assignment x such that for every clause
C ∈ C:

Pr(C is satisfied by x)≥ min(‖zC‖2|C|d/64,2e|C|/8)

4d|C|
.

Proof. For every index u, we sort all vectors ui according to their length. Let Su be the indices of dd/2e
shortest vectors among ui, and Lu = [d]\Su be the indices of bd/2c longest vectors among ui (we break
ties arbitrarily). For every clause C let r(C) = |{(u, i) ∈C : i ∈ Su}|.

Claim 4.2. For every i ∈ Su, we have ‖ui‖2 ≤ 1/|Su|.

Proof. Let i ∈ Su. Note that ‖ui‖2 +∑ j∈Lu ‖u j‖2 ≤ 1 (this follows from SDP constraints). There are
at least dd/2e terms in the sum, and ‖ui‖2 is the smallest among them (since i ∈ Su). Thus ‖ui‖2 ≤
1/dd/2e= 1/|Su|.
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We use a combination of two rounding schemes: one of them works well on clauses C with r(C)≥
|C|/4, the other on clauses C with r(C)≤ |C|/4.

Lemma 4.3. There is a polynomial-time randomized rounding algorithm that given a MAX-CSPd
instance I with d ≥ 113 outputs an assignment x such that every clause C with r(C)≥ |C|/4 is satisfied
with probability at least

min(‖zC‖2 |C|d/64,e|C|/4)

2d|C|
.

Proof. We will construct a sub-instance I′ with a uniform SDP solution and then solve I′ using Lemma 3.1.
To this end, we first construct a partial assignment x. For every u ∈ X , with probability |Lu|/d = bd/2c/d,
we assign a value to xu uniformly at random from Lu; with probability 1−|Lu|/d = |Su|/d, we do not
assign any value to xu. Let A = {u : xu is assigned}. Let us say that a clause C survives the partial
assignment step if for every (u, i) ∈C either u ∈ A and i = xu, or u /∈ A and i ∈ Su.

The probability that a clause C survives is

∏
(u,i)∈C,i∈Lu

Pr(xu is assigned value i) ∏
(u,i)∈C,i∈Su

Pr(xu is unassigned)

=

(
bd/2c

d
· 1
bd/2c

)|C|−r(C)

·
(
dd/2e

d

)r(C)

=
dd/2er(C)

d|C|
.

For every surviving clause C, let C′ = {(u, i) : u /∈ A}. Note that for every (u, i) ∈C′ we have i ∈ Su.
We get a sub-instance I′ of our problem on the set of unassigned variables {xu : u /∈ A} with the set of
clauses {C′ : C ∈ C survives}. The length of each clause C′ equals r(C). In sub-instance I′, we require that
each variable xu takes values in Su. Thus I′ is an instance of MAX CSPd′ problem with d′ = |Su|= dd/2e.

Now we transform the SDP solution for I to an SDP solution for I′: we let zC′ = zC for surviving
clauses C, remove vectors ui for all u ∈ A, i ∈ [d] and remove vectors zC for non-surviving clauses C. By
Claim 4.2, this SDP solution is a uniform solution for I′ (i. e., ‖ui‖2 ≤ 1/d′ for every u /∈ A and i ∈ Si;
note that I′ has alphabet size d′). We run the rounding algorithm from Lemma 3.1. The algorithm assigns
values to unassigned variables xu. For every surviving clause C, we get

Pr(C is satisfied by x) = Pr
(
C′ is satisfied by x

)
≥ min(‖zC‖2|C′|d′/8,e|C

′|)

2d′|C
′|

=
min(‖zC‖2r(C)d′/8,er(C))

2d′r(C)
≥ min(‖zC‖2|C|d/64,e|C|/4)

2d′r(C)
.

Therefore, for every clause C,

Pr(C is satisfied by x)≥ Pr(C is satisfied by x |C survives)Pr(C survives)

≥ min(‖zC‖2|C|d/64,e|C|/4)

2d′r(C)
× dd/2er(C)

d|C|

=
min(‖zC‖2|C|d/64,e|C|/4)

2d|C|
.
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Finally, we describe an algorithm for clauses C with r(C)≤ |C|/4.

Lemma 4.4. There is a polynomial-time randomized rounding algorithm that given an MAX-CSPd
instance I outputs an assignment x such that every clause C with r(C)≤ |C|/4 is satisfied with probability
at least e|C|/8/d|C|.

Proof. We do the following independently for every vertex u ∈ X . With probability 3/4, we choose xu

uniformly at random from Lu; with probability 1/4, we choose xu uniformly at random from Su. The
probability that a clause C with r(C)≤ |C|/4 is satisfied equals

∏
(u,i)∈C,i∈Lu

3
4|Lu| ∏

(u,i)∈C,i∈Su

1
4|Su|

=
1

d|C|
·
(

3d
4|Lu|

)|C|−r(C)( d
4|Su|

)r(C)

≥ 1
d|C|
·
(

3d
4|Lu|

)3|C|/4( d
4|Su|

)|C|/4

≥ 1
d|C|
·

((
3
2

)3/4( d
2(d +1)

)1/4
)|C|

.

Note that (
3
2

)3/4( d
2(d +1)

)1/4

≥
(

3
2

)3/4( 113
2 ·114

)1/4

≥ e1/8 .

Therefore, the probability that the clause is satisfied is at least e|C|/8/d|C|.

We run the algorithm from Lemma 4.3 with probability 1/2 and the algorithm from Lemma 4.4 with
probability 1/2. Consider a clause C ∈ C. If r(C)≥ |C|/4, we satisfy C with probability at least

min(‖zC‖2|C|d/64,e|C|/4)

4d|C|
.

If r(C)≤ |C|/4, we satisfy C with probability at least e|C|/8/(2d|C|). So we satisfy every clause C with
probability at least

min(‖zC‖2|C|d/64, 2e|C|/8)

4d|C|
.

5 Approximation algorithm for MAX-k-CSPd

In this section we combine results from previous sections and prove the main theorem of the paper.

Theorem 5.1. There is a polynomial-time randomized approximation algorithm for MAX-k-CSPd that
given an instance I finds an assignment that satisfies at least Ω(min(kd,ek/8)OPT(I)/dk) clauses with
constant probability.

Proof. If d ≤ 113, we run the algorithm of Charikar, Makarychev and Makarychev [4] and get Ω(k/dk)
approximation. So we assume below that d ≥ 113. We also assume that kd/dk ≥ 1/|C|, as otherwise we
just choose one clause from C and find an assignment that satisfies it. Thus dk is polynomial in the size of
the input.
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We solve the SDP relaxation for the problem and run the rounding scheme from Lemma 4.1 dk times.
We output the best of the obtained solutions. By Lemma 4.1, each time we run the rounding scheme we
get a solution with expected value at least

∑
C∈C

min(‖zC‖2|C|d/64,2e|C|/8)

4d|C|
≥ ∑

C∈C

min(kd/64,2ek/8)

4dk ‖zC‖2 ≥ min(kd/64,2ek/8)

4dk SDP(I)

≥ min(kd/64,2ek/8)

4dk OPT(I) .

Denote α =min(kd/64,2ek/8)/4dk. Let Z be the random variable equal to the number of satisfied clauses.
Then E [Z]≥ αOPT(I), and Z ≤ OPT(I) (always). Let p = Pr(Z ≤ αOPT(I)/2). Then

p · (αOPT(I)/2)+(1− p) ·OPT(I)≥ E [Z]≥ αOPT(I) .

So
p≤ 1−α

1−α/2
= 1− α

2−α
.

So with probability at least 1− p≥ α/(2−α), we find a solution of value at least αOPT(I)/2 in one
iteration. Since we perform dk > 1/α iterations, we find a solution of value at least αOPT(I)/2 with
constant probability.

6 Improved approximation factor for Boolean MAX-k-CSP

In this section we present an approximation algorithm for the Boolean Maximum k-CSP problem, MAX-
k-CSP2. The algorithm has approximation factor 0.626612k/2k if k is sufficiently large. This bound
improves the previously best known bound of 0.44k/2k [4] (if k is sufficiently large).

Our algorithm is a slight modification of the algorithm for rounding uniform solutions of MAX-k-
CSPd . We use the SDP relaxation presented in Section 2. Without loss of generality, we will assume
below that all clauses have length exactly k. If a clause C is shorter, we can introduce k−|C| new variables
and append them to C. This transformation will not change the value of the instance.

First, we describe a rounding scheme for an SDP solution {u1,u2}u∈X ∪{zC}C∈C.

Lemma 6.1. There is a polynomial-time randomized rounding algorithm such that for every clause C ∈ C
the probability that the algorithm satisfies C is at least

1
2k
√

2π/k

∫
∞

0
hβ (t)

kdt, where hβ (t) = 2Φ(β t)e−t2/2 ,

and β =
√

k‖zC‖2.

Proof. We round the SDP solution as described in Figure 2 below.
Consider a clause C ∈ C. We assume without loss of generality that C = {(u,1) : u ∈ supp(C)}. Let

γC = 〈zC,g〉 and γu = 〈u2− u1 + zC,g〉 for u ∈ supp(C). Note that all variables γC and γu are jointly
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SDP Rounding Scheme for MAX-k-CSP2

Input: an instance of MAX-k-CSP2 and an SDP solution.
Output: an assignment x.

• Choose a random Gaussian vector g so that every component of g is distributed as a Gaussian
variable with mean 0 and variance 1, and all components are independent.

• For every u ∈ X , let xu = argmaxi〈ui,g〉.

Figure 2: SDP Rounding Scheme for MAX-k-CSP2.

Gaussian. We have for u ∈ supp(C),

Var[γC] = ‖zC‖2 = β
2/k (where β =

√
k‖zC‖2) ,

Var[γu] = ‖u2−u1 + zC‖2 = ‖u1‖2 +‖u2‖2 +‖zC‖2−2〈u1,zC〉= ‖u1‖2 +‖u2‖2−‖zC‖2 ≤ 1 ,

E [γCγu] = 〈zC,u2−u1 + zC〉= 〈zC,u2〉−〈zC,u1〉+ 〈zC,zC〉= 0−‖zC‖2 +‖zC‖2 = 0 .

Therefore, all random variables γu, for u ∈ supp(C), are independent from γC. The probability that C is
satisfied equals

Pr(C is satisfied) = Pr(〈u1,g〉> 〈u2,g〉 for every u ∈ supp(C))

= Pr(γC > γu for every u ∈ supp(C))≥ Pr(|γu|< γC for every u ∈ supp(C))

= EγC [Pr(|γu| ≤ γC for every u ∈ supp(C) | γC)]

let t = γC/β
=

1√
2π/k

∫
∞

t=0
Pr(|γu| ≤ β t for every u ∈ supp(C))e−kt2/2 dt .

We use here that Var[γC/β ] = 1/k. By Šidák’s Theorem (Theorem 2.5), we have

Pr(|γu| ≤ β t for every u ∈ supp(C))≥ ∏
u∈supp(C)

Pr(|γu| ≤ β t) = ∏
u∈supp(C)

Φ(β t/
√

Var[γu])

≥ ∏
u∈supp(C)

Φ(β t) = Φ(β t)k .

We conclude that
Pr(C is satisfied)≥ 1

2k
√

2π/k

∫
∞

0
hβ (t)

kdt.

Let g(β ) = maxt∈R hβ (t) (hβ (t) attains its maximum since hβ (t)→ 0 as t→ ∞). Note that g(β ) is
an increasing function since hβ (t) is an increasing function of β for every fixed t. Additionally, g(0) = 0
and limβ→∞ g(β ) = 2 since g(β )≥ hβ (β

−1/2) = 2Φ(
√

β )e−1/(2β )→ 2 as β → ∞, and for every β and
t, hβ (t)≤ 2. Therefore, g−1 is defined on [0,2). Let β0 = g−1(1). It is easy to check numerically that
β0 ∈ (1.263282,1.263283).
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Figure 3: The figure shows the graph of g(t). Note that g(t)> 1 when t > β0 ≈ 1.263282.

Claim 6.2. For every β > β0 there exists k0 (which depends only on β ) such that if k ≥ k0 and ‖zC‖ ≥
β/
√

k then the probability that the algorithm from Lemma 6.1 returns an assignment that satisfies C is at
least k2/2k.

Proof. Let ε1 = (g(β )−1)/2 > 0. Let ε2 be the measure of the set
{

t : hβ (t)> 1+ ε1
}

. Since hβ (t) is
continuous, ε2 > 0.

The probability that C is satisfied is at least

1
2k
√

2π/k

∫
∞

0
hβ (t)

kdt ≥ ε2(1+ ε1)
k

2k
√

2π/k
.

We choose k0 so that for every k ≥ k0

ε2(1+ ε1)
k ≥

√
2π/k · k2 .

Then if k ≥ k0 the probability that the clause is satisfied is at least k2/2k.

Now we are ready to describe our algorithm.

Theorem 6.3. There is a randomized approximation algorithm for the Boolean MAX-k-CSPproblem
with approximation guarantee αkk/2k where αk→ α0 ≥ 0.626612 as k→ ∞ and α0 = 1/β 2

0 . (Here, as
above, β0 is the solution of the equation g(β ) = 1 where g(β ) = maxt∈R 2Φ(β t)e−t2/2.)

Proof. The algorithm with probability p = 1/k rounds the SDP solution as described in Lemma 6.1, with
probability 1− p, it choses a completely random solution.

Let α < α0. We will show that if k is large enough, every clause is satisfied with probability at
least αk/2k. Let β = (β0 +α−1/2)/2 ∈ (β0,α

−1/2) (recall that α−1/2 > α
−1/2
0 = β0). Let k0 be as in

Claim 6.2. Suppose that k ≥max(k0,(1−αβ 2)−1).
Consider a clause C. We show that the algorithm satisfies C with probability at least α‖zC‖2k/2k.

Indeed, we have:

• If ‖zC‖< β/
√

k, the clause is satisfied with probability at least

(1− p)/2k ≥ (1− p)k‖zC‖2

β 22k ≥ α‖zC‖2k/2k .
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• If ‖zC‖ ≥ β/
√

k, the clause is satisfied with probability at least p · k2/2k = k/2k ≥ k‖zC‖2/2k.

We conclude that the algorithm finds a solution that satisfies at least

αk
2k ∑

C∈C
‖zC‖2 =

αk
2k ·SDP≥ αk

2k ·OPT

clauses in expectation. By running this algorithm polynomially many times (as we do in Theorem 5.1),
we can find a solution of value at least α ′k OPT/2k for every constant α ′ < α with high probability.

7 Proof of Lemma 2.4

In this section we prove Lemma 2.4. We will use the following fact.

Lemma 7.1 (see, e. g., [3]). For every t > 0,

2t√
2π (t2 +1)

e−
t2
2 < Φ̄(t)<

2√
2π t

e−
t2
2 .

Lemma 2.4. For every t > 0 and β ∈ (0,1], we have

Φ̄(β t)≤ Φ̄(t)β 2
.

Proof. Rewrite the inequality we need to prove as follows: (Φ̄(β t))1/β 2 ≤ Φ̄(t). Denote the left hand
side by f (β , t):

f (β , t) = Φ̄(β t)1/β 2
.

We show that for every t > 0, f (β , t) is a non-decreasing function as a function of β ∈ (0,1]. Then,

(Φ̄(β t))1/β 2
= f (β , t)≤ f (1, t) = Φ̄(t).

We first prove that ∂ f (1,t)
∂β

> 0 for t > 0. Write,

∂ f (1, t)
∂β

=−2log(Φ̄(t))Φ̄(t)+ tΦ̄′(t) =−2log(Φ̄(t))Φ̄(t)− 2t e−t2/2
√

2π
.

Consider two cases.

Case 1: t ≥
√

2e/π . By Lemma 7.1,

Φ̄(t)<
2√
2πt

e−t2/2 ≤ e−1/2e−t2/2 = e−(t
2+1)/2 .

Hence, −2log(Φ̄(t))> (t2 +1), and by Lemma 7.1,

−2log(Φ̄(t))Φ̄(t)> (t2 +1)Φ̄(t)>
2t e−t2/2
√

2π
.
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Thus ∂ f (1,t)
∂β

> 0.

Case 2: t <
√

2e/π . Let ρ(x) =− logx/(1− x) for x ∈ (0,1) and write,

− logΦ̄(t) = ρ(Φ̄(t)) · (1− Φ̄(t)) =
ρ(Φ̄(t))√

2π

∫ t

−t
e−x2/2dx≥ 2ρ(Φ̄(t))te−t2/2

√
2π

.

Hence,
∂ f (1, t)

∂β
=−2log(Φ̄(t))Φ̄(t)− 2t e−t2/2

√
2π

≥ 2te−t2/2
√

2π
× (2ρ(Φ̄(t))Φ̄(t)−1) .

Assume first that Φ̄(t) ≥ 1/3. Note that 2xρ(x) > 1 for x ∈ [1/3,1] since the function xρ(x) is
increasing and ρ(1/3)> 3/2. Hence 2Φ̄(t)ρ(Φ̄(t))> 1 and thus ∂ f (1,t)

∂β
> 0.

Assume now that Φ̄(t)< 1/3 (we still consider the case t <
√

2e/π). Then, Φ̄(t)≥ Φ̄(
√

2e/π)> 1/6
and hence Φ̄(t) ∈ (1/6,1/3). Since the function −x logx is increasing on the interval (0,e−1),

−2log(Φ̄(t))Φ̄(t)>−2log(1/6) · 1
6
>

1
2
.

The function te−t2/2 attains its maximum at t = 1, thus

2t e−t2/2
√

2π
≤ 2e−1/2
√

2π
<

1
2
.

We get
∂ f (1, t)

∂β
=−2log(Φ̄(t))Φ̄(t)− 2t e−t2/2

√
2π

> 0 .

Since ∂ f (1,t)
∂β

> 0, for every t ′ > 0 there exists ε0 > 0 such that for all ε ∈ (0,ε0), f (1−ε, t ′)< f (1, t ′).
Particularly, for t ′ = β t, some ε0 > 0 and every ε ∈ (0,ε0), we have

f (β , t) = f (1, t ′)1/β 2 ≥ f (1− ε, t ′)1/β 2 ≥ f ((1− ε)β , t) .

Therefore, f (β , t) is a non-decreasing function of β .

8 Hardness of MAX-k-CSPd

In this section we present Håstad’s hardness result for MAX-k-CSPd .

Definition 8.1. Let f (k,d) be the infimum of all C such that there is a C/dk approximation algorithm for
MAX-k-CSPd .

Håstad proves that f (k,d)≤ 4kd for k ≥ d, assuming the Unique Games Conjecture. His result is
based on the following theorem of Austrin and Mossel [1].
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Theorem 8.2 (Austrin and Mossel [1]). Let χ1, . . . ,χk be a family of k pairwise independent random
variables defined on a sample space Ω that take values in a set of size d. Then f (k,d)≤ |Ω| assuming
the Unique Games Conjecture.

Theorem 8.2 shows that in order to prove that f (k,d) = O(kd), it suffices to construct a family of k
pairwise independent random variables defined on a sample space of size O(kd).

Lemma 8.3. Let p be a prime number. Suppose that d and k are powers of p, and p≤ d ≤ k. Then there
exist k random variables defined on a sample space Ω such that

• each random variable is uniformly distributed in a set of size d.

• all variables are pairwise independent, and

• |Ω|= kd.

Proof. Let F be a finite field of size p and E be an extension of F of size k. Note that E is a linear space
over F . Let L be a linear subspace of E of dimension logp d (L is not necessarily a subfield of E). Then
|L|= d. Let π be a projection of E on L. Consider the probability space Ω = E×L with uniform measure.
Define the following family of random variables indexed by elements of E:

χe(a,b) = π(ae)+b where (a,b) ∈Ω .

Note that |Ω| = |E×L| = kd, the domain size of each random variable is |L| = d, and the number of
random of variable is |E|= k. We show now that random variables {χe}e∈E are uniformly distributed in
L and pairwise independent.

Consider a random variable χe. Note that χe = π(ae)+b is uniformly distributed in L when a is fixed
and b is random. Therefore, χe is also uniformly distributed in E when both a and b are random.

Now consider two random variables χe and χe′ . Observe that χe−χe′ = π(a(e− e′)). Since e 6= e′,
we have that a(e− e′) is uniformly distributed in E, and thus χe−χe′ is uniformly distributed in L. For
every c,c′ ∈ L, we have

Pr
(
χe = c,χe′ = c′

)
= Pr

(
χe = c,χe−χe′ = c− c′

)
= Ea[Pr

(
χe = c,χe−χe′ = c− c′ | a

)
]

= Ea[Pr(χe = c | a) · 1χe−χe′=c−c′ ] = Ea[1/|L| · 1χe−χe′=c−c′ ] = 1/|L|2 ,

where 1χe−χe′=c−c′ is the indicator of the event χe−χe′ = c−c′. Therefore, χe and χe′ are independent.

Theorem 8.4. For every, k ≥ d ≥ 2, we have f (k,d)≤ 4kd.

Proof. Let k′ = 2dlog2 ke ∈ [k,2k), and d′ = 2dlog2 de ∈ [d,2d). We apply Lemma 8.3 with parameters p = 2,
k′ and d′. We get that there are k′ pairwise independent random variables taking values in a set of size d′

defined on a sample space Ω of size k′d′. We choose k among these k′ random variables (arbitrarily).
By Theorem 8.2, we have f (k,d′)≤ |Ω|= k′d′ ≤ 4kd. It was shown in [4] that the function f (k,d)

is monotone in d. Therefore, f (k,d)≤ f (k,d′)≤ 4kd.

THEORY OF COMPUTING, Volume 10 (13), 2014, pp. 341–358 355

http://dx.doi.org/10.4086/toc


KONSTANTIN MAKARYCHEV AND YURY MAKARYCHEV

9 Simple greedy algorithm for MAX-k-CSPd

In this section we present a very simple approximation algorithm for MAX-k-CSPd with approximation
guarantee Ω(d/dk). This algorithm gives a better approximation than our algorithm from Theorem 5.1
when k = O(logd).

Theorem 9.1. There is a (d/e)/dk approximation algorithm for MAX-k-CSPd .

Proof. Our algorithm consists of two steps. In the first step, for every u ∈V ,

• with probability (k−1)/k, we assign xu a value x′u ∈ [d] uniformly at random;

• with probability 1/k, we do not assign any value to xu.

We get a partial assignment x′. In the second step, we assign values to unassigned variables. Let P′ be
the set of clauses C ∈ P such that exactly one variable in supp(C) is unassigned. Let P′′ be the subset of
clauses in P′ that are consistent with x′. Now we assign values to unassigned variables so as to maximize
the number of satisfied clauses in P′′. Specifically, for every unassigned variable xu, we find value i that
maximizes |{C ∈ P′′ : (u, i) ∈C}| and assign x′u = i. We obtain an assignment x′.

Let us lower bound the number of constraints satisfied by x′. Let x∗ be an optimal assignment
and P∗ be the set of clauses x∗ satisfies. Note that every clause C belongs to P′ with probability
k ·1/k · (1−1/k)k−1 ≥ 1/e. Every clause in P′ belongs to P′′ with probability 1/dk−1. Therefore,

E[|P∗∩P′′|]≥ 1
edk−1 · |P

∗|= 1
edk−1 ·OPT .

Note that x∗ satisfies at least |P∗∩P′′| clauses in P′′ since it satisfies all clauses in P∗∩P′′. Since in the
second step we assign values to xu so as to maximize the number of satisfied clauses in P′′, we have that
x′ also satisfies at least |P∗∩P′′| clauses in P′′. Thus in expectation x′ satisfies at least

E[|P∗∩P′′|]≥ 1
edk−1 OPT

clauses.
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