
THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843
www.theoryofcomputing.org

On Beating the Hybrid Argument∗

Bill Fefferman† Ronen Shaltiel‡ Christopher Umans§

Emanuele Viola¶

Received February 23, 2012; Revised July 31, 2013; Published November 14, 2013

Abstract: The hybrid argument allows one to relate the distinguishability of a distribution
(from uniform) to the predictability of individual bits given a prefix. The argument incurs
a loss of a factor k equal to the bit-length of the distributions: ε-distinguishability implies
ε/k-predictability. This paper studies the consequences of avoiding this loss—what we call
“beating the hybrid argument”—and develops new proof techniques that circumvent the loss
in certain natural settings. Our main results are:

1. We give an instantiation of the Nisan-Wigderson generator (JCSS 1994) that can
be broken by quantum computers, and that is o(1)-unpredictable against AC0. We
conjecture that this generator indeed fools AC0. Our conjecture implies the existence
of an oracle relative to which BQP is not in the PH, a longstanding open problem.

2. We show that the “INW generator” by Impagliazzo, Nisan, and Wigderson (STOC’94)
with seed length O(logn log logn) produces a distribution that is 1/ logn-unpredictable

∗An extended abstract of this paper appeared in the Proceedings of the 3rd Innovations in Theoretical Computer Science
(ITCS) 2012.

†Supported by IQI.
‡Supported by BSF grant 2010120, ISF grants 686/07,864/11 and ERC starting grant 279559.
§Supported by NSF CCF-0846991, CCF-1116111 and BSF grant 2010120.
¶Supported by NSF grant CCF-0845003.

ACM Classification: F.1.3, F.2.3

AMS Classification: 81P68, 68Q15

Key words and phrases: complexity theory, pseudorandom generator, BQP, hybrid argument, circuits,
branching programs

© 2013 Bill Fefferman, Ronen Shaltiel, Christopher Umans and Emanuele Viola
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2013.v009a026

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2013.v009a026

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

against poly-logarithmic width (general) read-once oblivious branching programs.
(This was also observed by other researchers.) Obtaining such generators where the
output is indistinguishable from uniform is a longstanding open problem.

3. We identify a property of functions f , “resamplability,” that allows us to beat the hybrid
argument when arguing indistinguishability of

G⊗k
f (x1, . . . ,xk) = (x1, f (x1),x2, f (x2), . . . ,xk, f (xk))

from uniform. This gives new pseudorandom generators for classes such as AC0[p]
with a stretch that, despite being sub-linear, is the largest known. We view this as a
first step towards beating the hybrid argument in the analysis of the Nisan-Wigderson
generator (which applies G⊗k

f on correlated x1, . . . ,xk) and proving the conjecture in
the first item.

1 Introduction

1.1 The hybrid argument

The hybrid argument [20] (see also [10, 48] and [15] for an exposition) is a powerful proof technique that
has widespread applications in cryptography and complexity theory. Suppose we have a random variable
Z = (Z1,Z2, . . . ,Zk) ∈ {0,1}k that can be distinguished from the uniform distribution on k bits, U , by a
function D, i. e., ∣∣Pr[D(Z) = 1]−Pr[D(U) = 1]

∣∣≥ ε .

We are interested in predicting Zi from a prefix Z1,...,i−1 with some advantage over random guessing. The
hybrid argument (in its most basic form) reasons about this via hybrid distributions

Hi
def
= (Z1,Z2, . . . ,Zi,Ui+1,Ui+2, . . . ,Uk) .

Since H0 =U and Hk = Z, using the triangle inequality we get

ε ≤
∣∣Pr[D(Z) = 1]−Pr[D(U) = 1]

∣∣≤ k

∑
i=1

∣∣Pr[D(Hi−1) = 1]−Pr[D(Hi) = 1
∣∣ ,

which means that D distinguishes two adjacent hybrids, Hi−1 and Hi, with gap at least ε/k. From here,
it is easy to convert D into a closely related function that predicts Zi from the prefix with advantage
ε/k over random guessing. The contrapositive is that unpredictability implies indistinguishability. The
canonical application of this argument is to the construction of pseudorandom generators, where it is
often easier to design an unpredictable Z (e. g., from a hard or one-way function) than to argue directly
about indistinguishability [10, 48, 16, 23, 31, 33]. The hybrid argument also plays an important role in the
inductive arguments underlying pseudorandom generators against space-bounded computation [32, 25].

The power of the hybrid argument lies in its generality: it is a generic tool, making no assumptions
about the random variable Z or the complexity of D. But this generality comes with a price: the factor k
multiplicative loss in passing from the distinguishability of Z from U , to the distinguishability of two

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 810

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

adjacent hybrids. This loss is negligible when k is much less than 1/ε which is a common setting for
constructions of pseudorandom generators under super-polynomial hardness assumptions. But the loss is
a major stumbling block when k is comparable to, or much larger than, 1/ε . In this case (for example)
the loss prevents us from obtaining small-seed generators against various low-level circuit classes for
which known lower bounds are not strong enough to withstand the loss (see [37]).

It is reasonable to guess that if one imposes restrictions on the type of Z’s distribution, or on the
complexity of D, this loss might be lessened or avoided entirely—what we call “beating the hybrid
argument.”1

In this paper we show that two longstanding open problems in complexity would be resolved by
beating the hybrid argument. The first concerns the problem of constructing an oracle relative to which
BQP is not in the Polynomial-time Hierarchy (PH), and the second concerns the problem of constructing
pseudorandom generators for space. In each setting, the fact that the hybrid argument is the bottleneck
is not obvious; to show that it is a bottleneck, we construct a non-standard instantiation of the Nisan-
Wigderson (NW) generator [33] that can be broken by quantum computers in the first setting, and we
modify the standard analysis of the Impagliazzo-Nisan-Wigderson (INW) generator [25] in the second.
These two settings are discussed in more detail in Section 1.2.

We then pursue a program of determining when the hybrid loss can be avoided, by imposing natural
restrictions on the distribution Z, and on the complexity of the distinguisher D. The complexity classes
we consider are certain “low” complexity classes between AC0 and L. We show that the hybrid loss can
indeed be avoided entirely when Z is obtained by repeated sampling from the distribution (U, f (U)),
for hard functions f that enjoy a special type of random self-reducibility we dub resamplability. We
then show that a variety of natural functions f are resamplable, such as parity and majority, the latter
corresponding to a special case of our central conjecture (Conjecture 2.6) concerning the BQP vs. PH
problem.

Even though we are only studying a relatively simple class of distributions Z, our techniques are
already powerful enough to obtain new, best-known pseudorandom generators for AC0[p] and other
classes. Although our generators have sublinear stretch, they improve on the folklore generators one can
obtain by using known hardness results and applying the hybrid argument—as we later summarize in
Table 1. These results demonstrate that the hybrid argument can be beaten in settings close to what is
needed for the two applications, and develop techniques that may be useful in tackling the distributions
that arise in those applications.

1.2 Two consequences of beating the hybrid argument

We now describe two longstanding open problems in complexity theory that would be resolved by beating
the hybrid argument. We also outline the main ideas in the technical development needed to establish the
hybrid argument as the bottleneck.

1Barak, Shaltiel, and Wigderson [7] were the first to show that this is possible, if D is a small PH-circuit or oblivious
bounded-width branching program, and additionally D is a particular strong, “nearly-one-sided” distinguisher.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 811

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

1.2.1 An oracle relative to which BQP is not in the PH

The quest for an oracle relative to which BQP is not in the PH dates to the foundational papers of the
field; the question was first asked by Bernstein and Vazirani [9] in the early 1990’s. Currently, oracles
are known relative to which BQP is not in MA [45], but no relativized worlds are known in which BQP
is not in AM. Obtaining an oracle relative to which BQP is not in the PH thus represents a stubborn,
longstanding and fundamental problem whose resolution would help clarify the relationship between
BQP and classical complexity classes. In recent progress, Aaronson [2] devised a relation oracle problem
that lies in the function version of BQP but not in the function version of the PH, but this still leaves the
original problem open.2

In this paper we will speak almost exclusively about the “scaled down” version of the problem, which
is equivalent via the well-known connection between PH and AC0. In it, the goal is to design a promise
problem (rather than an oracle) that lies in (promise)-BQLOGTIME but not (promise)-AC0. The class
BQLOGTIME is the class of languages decidable by quantum computers that have random access to an
N-bit input, and use only O(logN) steps (see Section 2 for the formal definition). As in [2], our goal
will be to design, for each input length N, a distribution on N-bit strings that can be distinguished from
the uniform distribution by a BQLOGTIME predicate, but not by a (quasipolynomial-size) AC0 circuit.
As described in Section 2.6, such a distribution can be easily converted to a proper oracle O for which
BQPO 6⊆ PHO. To obtain such a distribution, we prove two main statements:

1. we generalize the setting of [2] to a simple framework in which any efficiently quantum-computable
unitary U gives rise to a distribution that can be distinguished from uniform by a quantum computer
(Aaronson’s setup is recovered by choosing U to be a DFT matrix), and

2. we give an explicit construction of unitary matrices whose row-supports form a Nisan-Wigderson
design, and we show how to realize these matrices with small quantum circuits in Section 2.3. This
is the technical core of the quantum section.

In our framework, these unitaries give rise to a distribution that is an instantiation of the NW PRG,
with MAJORITY as its hard function, and we conjecture (Conjecture 2.6) that this distribution is indeed
pseudorandom for AC0. The quantitative loss in the hybrid argument is the only thing standing in the way
of proving this conjecture, and thus resolving the oracle BQP vs. PH problem. In Section 4 we make a
step towards resolving our conjecture, by showing that it is true for the simpler case in which the sets in
the design for the NW generator are disjoint.

1.2.2 Pseudorandom generators for branching programs of small width

A longstanding open problem is to design log-space pseudorandom generators that stretch a seed of
O(logn) bits into n pseudorandom bits that are indistinguishable from uniform by polynomial-width
(read-once oblivious) branching programs. Such generators would yield RL = L, settling a major open
problem in complexity theory. Existing constructions of pseudorandom generators [32, 25] fail to reach
this goal because they use seeds of length O(log2 n). Despite significant effort, no improvement in the

2Aaronson [2] also proposed the “Generalized Linial-Nisan Conjecture” as a possible route to obtaining the desired oracle;
this conjecture turned out to be false in general [1]. The viability of our approach is unaffected by this development.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 812

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

seed length has been achieved even when restricting attention to constant-width branching programs,
although a recent, exciting line of works makes progress if the branching programs are constrained
further [11, 29, 12].

In this work we show that the INW generator [25] can be adapted to use seed length O(logn · log logn)
and produce an n-bit distribution in which each position cannot be predicted with advantage 1/ logn
(given the previous positions) by poly-logarithmic width branching programs. (This was also observed
by other researchers.) Thus, bypassing the loss of the hybrid argument would yield a breakthrough
in pseudorandom generators for small-width branching programs. In Section 3 we elaborate on this
approach.

1.3 New pseudorandom generators by beating the hybrid argument

Following the seminal work of [31] a long line of research is concerned with pseudorandom generators
against various classes of circuits. We say that a distribution Z on t bits is ε-pseudorandom for a class of
circuits C if for every circuit C in C,∣∣Pr[C(Z) = 1]−Pr[C(Ut) = 1]

∣∣≤ ε .

A function G : {0,1}d →{0,1}t is ε-pseudorandom for C if G(Ud) is ε-pseudorandom for C.
We will be mostly interested in classes of constant-depth circuits for various choices of allowed

gates. For many of these classes there are known circuit lower bounds which can be used to construct
pseudorandom generators. More precisely, let f : {0,1}n→{0,1} be a function with hardness δ against
some class C (meaning that every circuit in the class errs on at least (1/2−δ) ·2n inputs). It is immediate
that the function G f (x) = (x, f (x)) is a δ -pseudorandom generator for C. Its stretch (which we measure
additively) is 1. One way to improve it is by repeated sampling, namely:

G⊗k
f (x1, . . . ,xk) :=

(
(x1, f (x1)),(x2, f (x2)), . . . ,(xk, f (xk))

)
.

The pseudorandomness of G⊗k
f follows by the hybrid argument as long as k ≤ 1/δ and it stretches a

seed of length nk into nk+ k bits.3 The repeated sampling generator can be viewed as a special case of
the NW generator in which the sets of the design are all disjoint. The NW generator reduces the seed
length of the generator from nk to ≈ n2 which is beneficial whenever k� n. However, for k� n the
analysis of the NW generator relies on the hybrid argument on n bits, which in turn requires hardness
δ ≤ 1/n to get a meaningful result.

For some constant-depth circuit classes (that we mention below) the best-known lower bounds only
achieve hardness δ ≥

√
1/n. In such cases repeated sampling produces the best-known generators (and

there is no gain from using the NW generator). Repeated sampling extends the seed by k bits, and by the
previous discussion, using the hybrid argument k is bounded by 1/δ . In Section 4 we observe that this
loss is inherent in black-box proofs.

Our main technical contribution in this direction is developing new proof techniques that break this
barrier and allow us to show that G⊗k

f is pseudorandom even for k > 1/δ . As a consequence we obtain

3Note that not only does the hybrid argument loss yield no useful bound when k� 1/δ , but a complexity class powerful
enough to compute majority can break the “repeated sampling” generator by aggregating (weak) predictions of f (xi) from xi
over all i. This demonstrates that we must critically use limitations on the power of the class, which we do.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 813

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

Seed length of generators fooling poly(n)-size circuits on n bits.
Type of circuits Hybrid argument This work
AC0[p], p prime n−n1/3 n−n/poly logn (Cor. 4.8,4.18)
AC0 with no(1) majority gates n−n1/3 n−nβ , ∀β < 1 (Cor. 4.10)
AC0[6] n−poly logn n−nβ , ∀β < 1 (Cor. 4.20)

(under L 6⊆ AC0[6]) (under L 6⊆ AC0[6])

Table 1: Pseudorandom generators fooling circuits of size poly(n) on n bits.

improved pseudorandom generators for several circuit classes. These are summarized in Table 1 which
also includes a comparison to the best previous results. Let us make a couple of remarks. First, as we
mentioned before, the best previous results are obtained by analyzing the repeated-sampling generator via
the hybrid argument. Second, in our pseudorandom generators we also exploit the fact that the hardness
results hold for circuits of almost exponential size. This allows choosing k to be almost exponential in the
input length of the function, maximizing the stretch obtained by repeated sampling. The functions and
circuit classes we consider are:

Majority. The n-bit majority function has hardness Õ(1/
√

n) for AC0 [22] (the notation Õ hides
polylogarithmic factors), and this is tight as shown by the simple circuit that just outputs a bit of the input.
We prove that, in fact, the pseudorandomness of G⊗k

majority does not decay with k: AC0 circuits cannot
distinguish k independent copies of (Un,majority(Un)) from uniform with any constant advantage, for
any k = poly(n). This is the special case of Conjecture 2.6 we mentioned in Section 1.2.1.

Parity. The n-bit parity function is known to have hardness ≤ Õ(1/
√

n) for the class AC0[p] for every
prime p 6= 2 [36, 38, 39]. Here AC0[p] stands for AC0 circuits augmented with mod p gates. Whether
this bound can be improved is a major, twenty-year-old open problem. Using the hybrid argument, one
can only stretch

√
n · n bits to

√
n · (n+ 1) bits, corresponding to a seed length n− n1/3 for n output

bits. We are not aware of any better results. Similarly to the case of MAJORITY, we prove that G⊗k
parity

remains Õ(1/
√

n)-pseudorandom for any k ≤ 2no(1)
. This translates into an improved seed length of

n−n/poly logn for n output bits.
We obtain a similar result for the class of AC0 circuits with few (a small polynomial number of)

majority gates using the fact that parity is hard for this class [6, 8], and for AC0[2] using the determinant
function over GF(2) for a certain distribution M of input matrices due to Ishai and Kushilevitz [26, 27].
The determinant function also yields conditional results for the class ACC0 := ∪mAC0[m]. A recent
breakthrough by Williams [47, 46] shows that NEXP 6⊆AC0[m], but does not seem to imply pseudorandom
generators. Here our contribution is to show that, under a hardness assumption, one can get generators
with n output bits and seed length n−nΩ(1), whereas previous techniques would only give n−poly lgn.

An important open problem is whether our approach can be strengthened to handle the NW generator
with even slightly non-disjoint sets. This would reduce the seed length and give improved stretch. Also,
as mentioned earlier, achieving this goal in the case of MAJORITY and quasipolynomial-size AC0 suffices

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 814

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

to obtain an oracle relative to which BQP is not in PH.

1.4 The role of resamplability

We are interested in analyzing the pseudorandomness of the repeated sampling generator while avoiding
the loss of the hybrid argument. As mentioned briefly in Section 1.3, we cannot hope to beat the hybrid
argument unless we use specific (non-black-box) properties of the function f . In this work we identify
one such property, the ability to resample the function. Informally, we say that a function f is resamplable
if there is a (randomized) procedure R that on (fixed) input (x,b) produces a distribution R(x) over pairs
(x′,b′) such that x′ is uniformly distributed over the domain of f , and the event {b = f (x)⇔ b′ = f (x′)}
holds with probability one. We stress that we are interested in procedures R that use less resources
than those required to compute f . This notion of resamplability is thus a special type of random self-
reducibility, a well-studied concept in complexity theory (see, e. g., [13] and the references therein). In
particular, it is easy to see that resamplability allows us to relate the average-case hardness of f to its
worst-case hardness.

Our approach using resamplability yields the following: Let f be a function that is resamplable in a
class C and has hardness δ > 0 against C. We show that the repeated sampling generator G⊗k

f remains
δ -pseudorandom for C as long as k is smaller than the size bound of circuits in C. This analysis beats the
hybrid argument as it allows choosing k� 1/δ . The results in Section 4 are obtained by identifying hard
functions that have (known) efficient resamplers, and then applying arguments that rely on them being
resamplable. We comment that in Section 4 we use more general notions of resamplability than the one
described here (and some of our results make use of these generalizations).

1.5 Organization of this paper

In Section 2 we state our conjecture about a certain instantiation of the Nisan-Wigderson generator fooling
AC0, and we prove that this conjecture would yield an oracle separating BQP from PH. A construction
that is related to this proof, but not needed for it, is presented in Appendix A. In Section 3 we discuss our
results about pseudorandom generators for space-bounded computation. In Section 4 we show how to
beat the hybrid argument for certain repeated sampling generators, proving along the way a special case
of the conjecture mentioned above.

2 Toward an oracle relative to which BQP is not in the PH

In this section we discuss our results regarding the BQP vs. PH problem. We start with some standard
preliminaries.

2.1 Preliminaries

A unitary matrix is a square matrix U with complex entries such that UU∗ = I, where U∗ is the conjugate
transpose. Equivalently, its rows form an orthonormal basis, and the same holds for the columns. We
name the standard basis vectors of the N = 2n-dimensional vector space underlying an n-qubit system by
|v〉 for v ∈ {0,1}n. A local unitary is a unitary that operates only on b = O(1) qubits; i. e., after a suitable

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 815

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

renaming of the standard basis by reordering qubits, it is the matrix U ⊗ I2n−b , where U is a 2b× 2b

unitary. A local unitary can be applied in a single step of a quantum computer. A local decomposition of
a unitary matrix is a factorization of the matrix into a product of local unitaries. We say an N×N unitary
is efficiently quantum computable if this factorization has at most poly(n) factors.

A quantum circuit applies a sequence of local unitaries (“gates”) where each gate is drawn from a
fixed, finite set of gates. There are universal finite gate sets for which any efficiently quantum-computable
unitary matrix can be realized (i. e., approximated), up to exponentially small error, by a poly(n)-size
quantum circuit [28] over the chosen universal gate set.

Definition 2.1 (BQLOGTIME). A language L is in BQLOGTIME if it can be decided by a LOGTIME-
uniform family of circuits {Cn}, where each Cn is a quantum circuit on n qubits. On an (N = 2n)-bit
input x, circuit Cn applies O(logN) gates, with each gate being either a query gate which applies the map
|i〉|z〉 7→ |i〉|z⊕xi〉, or a standard quantum gate (from a fixed, finite basis). It is equivalent, by polynomially
padding the number of qubits, to allow poly log(N) gates.

In this paper, the only manner in which our BQLOGTIME algorithm will access the input string x is
the following operation, which “multiplies x into the phases.” There are three steps: (1) query with the
query register clean, which applies the map |i〉|0〉 7→ |i〉|0⊕ xi〉 (note each xi is in {0,1}); (2) apply to
the last qubit the map |0〉 7→ −|0〉, |1〉 7→ |1〉; (3) query again to “uncompute” the last qubit. The overall
map takes |i〉|0〉 to (−1)xi |i〉|0〉. When we speak of “multiplying x into the phase” it will be linguistically
convenient to speak about x as a vector with entries from {+1,−1}, even though one can see from this
procedure that the actual input is a 0/1 vector.

The following lemma will be needed in Section 2.4.2. It states (essentially) that a block-diagonal
matrix, all of whose blocks are efficiently quantum computable, is itself efficiently quantum computable.
This is trivial when all of the blocks are identical, but not entirely obvious in general.

Lemma 2.2. Fix N = 2n and M = 2m. Let U be an N ×N block-diagonal matrix composed of the
blocks U1,U2, . . . ,UM , where each Ui is a N/M×N/M matrix that has a poly(n)-size quantum circuit, a
description of which is generated by a uniform poly(n) time procedure, given input i. Then given three
registers of m qubits, n−m qubits, and poly(n) qubits, respectively, with the third register initialized to
|000 · · ·0〉, there is a poly(n) size uniform quantum circuit that applies U to the first two registers and
leaves the third unchanged.

Proof. Fix a finite universal set of quantum gates, of cardinality d, each of which operates on at most
b qubits. A convenient notion will be that of an oblivious circuit, in which we fix an ordering (say,
lexicographic) on [n]b, and the steps of the circuit are identified with poly(n) cycles through this list:
when we are on step (a1,a2, . . . ,ab) ∈ [n]b in one of these cycles, we operate on qubits a1,a2, . . . ,ab.
Clearly, any (uniform) quantum circuit can be converted to a (uniform) “oblivious” circuit with at most
an nb blowup by inserting dummy identity gates.

Let nk be an upper bound on the size of the oblivious circuits obtained in this way for the various Ui.
The circuit for each Ui is now a sequence

j(i) =
(

j(i)1 , j(i)2 , j(i)3 , . . . , j(i)nk

)
,

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 816

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

with each j(i)` ∈ [d] specifying which gate to apply at step ` in the oblivious circuit for Ui (and because
the circuit is oblivious, the qubits to which this gate should be applied are easily determined from `). Let
f : [M]→ [d]n

k
be the function that maps i to the vector j(i).

Now we describe the promised efficient quantum procedure:

1. Apply the map derived from f that takes |i〉|z〉 to |i〉|z⊕ f (i)〉, to the first and third register. We
view the contents of the third register as a vector in [d]n

k
.

2. Repeat for `= 1,2,3, . . . ,nk: apply the “controlled unitary” that consults the `-th component of
the third register, and applies the specified gate to qubits (a1,a2, . . . ,ab) of the second register
(again, (a1,a2, . . . ,ab) are easily determined from ` because the circuit is oblivious). The important
observation is that this “controlled unitary” operates on only constantly many qubits.

3. Repeat step 1 to uncompute the auxiliary information in the third register.

2.2 The quantum algorithm

We give a general framework allowing one to turn any efficiently quantum-computable unitary into
a distribution that can be distinguished from uniform by a BQLOGTIME machine. Our framework
generalizes the setup in [2].

Let A be any N×N matrix with entries4 in {0,1,−1} and pairwise orthogonal rows, and define S(A, i)
to be the support of the i-th row of matrix A. Define A to be the matrix A with entries in row i scaled by
1/
√
|S(A, i)|, and observe that A is a unitary matrix.

Define the random variable DA,M = (x,z) distributed on {+1,−1}2N by picking x ∈ {+1,−1}N

uniformly, and setting the next N bits to be z ∈ {+1,−1}N defined by zi = sgn((Ax)i) = sgn((Ax)i) for
i≤M and zi independently and uniformly random in {+1,−1} for i > M.

It will be convenient to think of M = N initially; we analyze the general case because we will
eventually need to handle M = N/2. Below, we use U2N to denote the random variable uniformly
distributed on {+1,−1}2N .

Theorem 2.3. Let N = 2n for an integer n > 0, and let M = Ω(N). For every matrix A ∈ {0,1,−1}N×N

with pairwise orthogonal rows, there is a BQLOGTIME algorithm QA that distinguishes DA,M from U2N;
i. e., there is some constant ε > 0 for which

|Pr[QA(DA,M) = 1]−Pr[QA(U2N) = 1]|> ε .

The algorithm is uniform if A comes from a uniform family of matrices.

Proof. The input to the algorithm is a pair of strings x,z ∈ {+1,−1}N .
The algorithm performs the following steps:

1. Enter a uniform superposition 1√
N ∑i∈{0,1}n |i〉. Multiply x into the phase to obtain 1√

N ∑i∈{0,1}n xi|i〉.

4We could extend this framework to matrices with general entries, but we choose to present this restriction since it is all we
need.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 817

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

2. Apply A to obtain 1√
N ∑i∈{0,1}n(Ax)i|i〉.

3. Multiply z into the phase to obtain 1√
N ∑i∈{0,1}n zi(Ax)i|i〉.

4. Define vector w by

wi =
1√
N

zi(Ax)i .

Apply the N×N Hadamard5 H to obtain ∑i∈{0,1}n(Hw)i|i〉, and measure in the computational basis.
Accept iff the outcome is 0n.

We first argue that the acceptance probability is small in case (x,z) is distributed as U2N . This follows
from a symmetry argument: for fixed x, and w as defined in Step 4 above, the vector Hw above has every
entry identically distributed, because z is independently chosen uniformly from {−1,+1}N and every row
of H is a vector in {−1,+1}N . In particular this implies that the random variable (Hw)2

i is identically
distributed for all i. Together with the fact that ∑i(Hw)2

i = 1, we conclude that E[(Hw)2
i] = 1/N. Then

by Markov, with probability at least 1−1/
√

N we accept with probability at most
√

N/N, for an overall
acceptance probability of at most 2/

√
N.

Next, we argue that the acceptance probability is large in case (x,z) is distributed as DA,M. Here we
observe that for i≤M,

wi =
1√
N

∣∣(Ax)i
∣∣ and hence E[wi] =

1√
N · |S(A, i)|

Ω(
√
|S(A, i)|) = Ω(1/

√
N)

(since before scaling, wi is just the distance from the origin of a random walk on the line, with |S(A, i)|
steps). For i > M, we simply have E[wi] = 0. Then E[∑i wi] = M ·Ω(1/

√
N) = Ω(

√
N), so E[(Hw)0n] =

Ω(1). Since the random variable (Hw)0n is always bounded above by 1, we can apply Markov to its
negation to conclude that with constant probability, it is at least a constant ε (and in such cases the
acceptance probability is at least ε2). Overall, the acceptance probability is Ω(1).

The BQLOGTIME algorithm for what Aaronson calls FOURIER CHECKING in [2] is recovered from
the above framework by taking A to be a DFT matrix (and M = N).

2.3 Unitary matrix with large, nearly-disjoint row supports

In light of Theorem 2.3, our task is now to construct a unitary A for which the associated distribution fools
AC0. A natural source for distributions that fool AC0 is the NW pseudorandom generator. In this section,
we show how to “realize” an instantiation of the NW generator as an efficiently quantum-computable
unitary. We start by reviewing the Nisan–Wigderson pseudorandom generator.

2.4 The Nisan–Wigderson generator

Definition 2.4 ([33]). A set family D= {S1,S2, . . . ,Sm} is an (`, p) design if every set in the family has
cardinality `, and for all i 6= j, |Si∩S j| ≤ p.

5This is the matrix H whose rows and columns are indexed by {0,1}n, with entry (i, j) equal to −1〈i, j〉/
√

N.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 818

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

Definition 2.5 ([33]). Given a function f : {0,1}`→{0,1} and an (`, p) design D= {S1,S2, . . . ,Sm} in
a universe of size t, the function NW f

D : {0,1}t →{0,1}m is given by

NW f
D(x) =

(
f1(x|S1), f2(x|S2), f3(x|S3), . . . , fm(x|Sm)

)
,

where each fi is the function f with a fixed set of its inputs negated,6 and x|S denotes the projection of x
to the coordinates in the set S.

Generally speaking, the function NW f
D is a PRG against a class of distinguishers as long as f is hard

on average for that class of distinguishers.
Below we construct unitary matrices A with the property that all or “almost all” of the row supports

S(A, i) are large and have bounded intersections. We also show that these unitaries are efficiently quantum
computable; this is the technical core of this section. The distribution DA,M (it will turn out that M will be
half the underlying dimension) can then easily be seen to be the distribution (UN ,NW MAJORITY

D), and
we would like to argue that this distribution fools quasipolynomial-size AC0. MAJORITY is indeed hard
for (exponential-size) AC0, but the quantitative loss in the hybrid argument stands in the way of proving
such a statement by known techniques. This is because majority on ` bits is only Õ(1/

√
`) hard, and we

output many more than
√
` bits.

Nevertheless, we conjecture that the distribution DA,M fools constant-depth circuits. Since we aim for
an oracle separation, and there is a quasi-polynomial relationship between oracle PH machines and AC0

circuits, we consider AC0 circuits of quasipolynomial size.

Conjecture 2.6. Let D= {S1,S2, . . . ,Sm} be an (`,O(1))-design in a universe of size t ≤ poly(`), with
m≤ poly(`). Then for every constant-depth circuit of size at most exp(poly logm),∣∣Pr[C(Ut+m) = 1]−Pr[C(Ut ,NW MAJORITY

D (Ut)) = 1]
∣∣≤ o(1) .

Using the hybrid argument, a distinguishing circuit C with gap ε can be converted to a predictor
with advantage ε/m and then (via the standard arguments in [31, 33]) into a slightly larger circuit that
computes MAJORITY with success rate 1/2+ ε/m. Thus the above statement is true for m≤ o(

√
`); if

the 1/m loss from the hybrid argument can be avoided (or reduced), it would be true for m as large as
poly(`) (and even larger) as we conjecture is true.

2.4.1 The paired-lines construction

We describe a collection of q2/2 pairwise-orthogonal rows, each of which is a vector in {0,+1,−1}q2
. We

identify q2 with the affine plane Fq×Fq, where q = 2n for an integer n > 0. Let B1,B2 be an equipartition
of Fq, and let φ : B1→ B2 be an arbitrary bijection. Our vectors are indexed by a pair (a,b) ∈ Fq×B1,
and their coordinates are naturally identified with Fq×Fq:

va,b[x,y] =

{
−1 if y = ax+b ,
+1 if y = ax+φ(b) .

(2.1)

6The standard setup has each fi = f ; we need the additional freedom in this paper for technical reasons. We know of no
settings in which this alteration affects the analysis of the NW generator.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 819

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

Notice that v(a,b) is −1 on exactly the points of Fq×Fq corresponding to the line with slope a and y-
intercept b, and +1 on exactly the points of Fq×Fq corresponding to the line with slope a and y-intercept
φ(b). So each v(a,b) is supported on exactly a pair of parallel lines. Orthogonality will follow from the
fact that every two non-parallel line-pairs intersect in exactly one point, as argued in the proof of the next
lemma.

Lemma 2.7. The vectors defined in equation (2.1) are pairwise orthogonal, and their supports form a
(2q,4) design.

Proof of Lemma 2.7. Consider (a,b) 6= (a′,b′). If a = a′ then the supports of v(a,b) and v(a,b′) are
disjoint. Otherwise a 6= a′ and there are exactly four intersection points (obtained by solving linear
equations over Fq):

• (x = (b′−b)/(a−a′),y = ax+b) = (x = (b′−b)/(a−a′),y = a′x+b′), which contributes (−1) ·
(−1) = 1 to the inner product, and

• (x = (b′− φ(b))/(a− a′),y = ax+ φ(b)) = (x = (b′− φ(b))/(a− a′),y = a′x+ b′), which con-
tributes (+1) · (−1) =−1 to the inner product, and

• (x = (φ(b′)− b)/(a− a′),y = ax+ b) = (x = (φ(b′)− b)/(a− a′),y = a′x+ φ(b′)), which con-
tributes (−1) · (+1) =−1 to the inner product, and

• (x = (φ(b′)− φ(b))/(a− a′),y = ax + φ(b)) = (x = (φ(b′)− φ(b))/(a− a′),y = a′x + φ(b′)),
which contributes (+1) · (+1) = 1 to the inner product.

The sum of the contributions to the inner product from these four points is zero. The computation of the
support size is straightforward.

In Appendix A, we give another construction (which is not needed for our main result) in which the
number of vectors is exactly equal to the dimension of the underlying space (giving rise to a unitary in
which “all rows participate” instead of only half of the rows). However, we leave as an open problem
obtaining a local decomposition of the associated unitary.

2.4.2 A local decomposition

We new describe a q2×q2 unitary matrix that is efficiently quantum computable and has the (normalized)
vectors v(a,b) from equation (2.1) as q2/2 of its q2 rows. We recall that q = 2n for an integer n > 0.

Proposition 2.8. The following q×q unitary matrices are efficiently quantum computable: (1) the DFT
matrix F with respect to the additive group of Fq and its inverse, and (2) the q×q unitary matrix B with

1√
2
(Iq/2|− Iq/2)

as its first q/2 rows,
1√
4
(Iq/4|− Iq/4|Iq/4|− Iq/4)

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 820

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

as its next q/4 rows,
1√
8
(Iq/8|− Iq/8|Iq/8|− Iq/8|Iq/8|− Iq/8|Iq/8|− Iq/8)

as its next q/8 rows, etc., and whose last row is 1√
N
(1,1,1, . . . ,1).

Proof of Proposition 2.8. The DFT matrices are well-known to be efficiently quantum computable. For
the second one we make use of the Hadamard matrix

H =
1√
2

(
1 −1
1 1

)
.

Let Bi be the q× q identity matrix with its lower right 2i× 2i submatrix replaced by the matrix H⊗
I2i−1 . Each Bi is efficiently quantum computable by Lemma 2.2. It is then easy to verify that B =
B1B2B3 · · ·Bn.

Lemma 2.9. Let α be a generator of the multiplicative group of Fq. For c ∈ Fq, let Dc denote the q×q
diagonal matrix

1
√

q
·diag

(√
q,(−1)Tr (α1·c),(−1)Tr (α2·c),(−1)Tr (α3·c), . . . ,(−1)Tr (αq−1·c)

)
,

and let D′c denote the q×q diagonal matrix

1
√

q
·diag

(
0,(−1)Tr (α1·c),(−1)Tr (α2·c),(−1)Tr (α3·c), . . . ,(−1)Tr (αq−1·c)

)
.

Then the q2× q2 matrix D whose (i, j) block (with i, j ∈ Fq) equals Di j if i = j and D′i j otherwise, is
efficiently quantum computable.

Proof of Lemma 2.9. Consider the q2×q2 block-diagonal matrix that has as its (k,k) block the matrix
whose (i, j) entry is (−1)Tr (i jαk) for k ∈ {1,2, . . . ,q−1} and whose (0,0) block is Iq. Each such block
except the (0,0) block is the DFT matrix F with its rows (or equivalently, columns) renamed according
to the map j 7→ jαk. The matrix F is efficiently quantum computable and the map j 7→ jαk is classically
and reversibly (and thus quantum) efficiently computable. Thus each q× q block on the diagonal is
efficiently quantum computable. By Lemma 2.2 the entire matrix is efficiently quantum computable.

If we index columns by (i, i′) ∈ (Fq)
2 and rows by (j, j′) ∈ (Fq)

2, then the desired matrix D is the
above block-diagonal matrix with the order of the two indexing coordinates for the rows transposed, and
the order of the two indexing coordinates for the columns transposed.

Our main theorem follows:

Theorem 2.10. The q2×q2 matrix (Iq⊗B) · (Iq⊗F) ·D · (Iq⊗F−1), which is efficiently quantum com-
putable, has the vectors v(a,b) from equation (2.1) as q2/2 of its rows.7

7To be precise, these are the v(a,b) with respect to some equipartition B1,B2 and some bijection φ .

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 821

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

Proof of Theorem 2.10. Let Sc be the q× q permutation matrix Sc that (when multiplied on the right)
shifts columns, identified with Fq, by the map x 7→ x+ c. Let J be the all-ones matrix. The main
observation is that

FDcF−1 =
1
√

q
Sc−

√
q−1
q

J , and that FD′cF−1 =
1
√

q
Sc−

1
√

q
J .

Thus the final matrix has in its (i, j) block (with i, j ∈ Fq) the matrix

B ·
(

1
√

q
Si j−

√
q−1
q

J
)

if i = j, and

B ·
(

1
√

q
Si j−

1
√

q
J
)

otherwise. Observe that BJ has all zero entries except for the last row, so in particular, the first q/2
rows of the (i, j) block are (1/

√
2q)(Iq/2|− Iq/2)Si j. Therefore the q/2 rows of the entire q2×q2 matrix

corresponding to the top halves of blocks (i, j) as j varies, give the vectors v(i,b) for b∈ B1, if we identify
columns with Fq×Fq as follows: columns of the j-th block are identified with { j}×Fq, and within the
j-th block, B1 is the first q/2 columns and B2 is the next q/2 columns (and the bijection φ maps the
element associated with the b-th column to the element associated with the (b+q/2)-th column).

Then, as i varies over Fq, we find all of the vectors from equation (2.1) as the “top-halves” of each
successive set of q rows of the large matrix.

2.5 Putting it all together

Theorem 2.11. Assuming Conjecture 2.6, for every N there is a distribution DN on N bits such that: (1)
there is a BQLOGTIME algorithm that distinguishes DN from the uniform distribution on N bits with
probability ≥Ω(1); and (2) for every d, any depth-d AC0 circuit of size exp(logd N) has vanishing (o(1))
advantage in distinguishing DN from uniform.

Proof of Theorem 2.11. We only construct DN for certain lengths—one can extend the construction to
work for every length by padding.

Let A be the matrix of Theorem 2.10, and set N = q2 and M = N/2. By Theorem 2.3, there is a
BQLOGTIME algorithm that distinguishes DA,M from the the uniform distribution U2N .

By Lemma 2.7, the first M rows of A have supports forming a (2
√

N,4)-design D. It is also clear that
for i≤M, the (N+ i)-th bit of DA,M computes MAJORITY (with a fixed pattern of inputs negated) on those
among the first N bits that lie in S(A, i). Thus DA,M is exactly the distribution (UN ,NW MAJORITY

D (UN))
followed by N/2 additional independent random bits (which can have no impact on the distinguishability
of the distribution from uniform). Thus by Conjecture 2.6, no constant-depth, quasipolynomial-size
circuit can distinguish DA,M from U2N . This concludes the proof.

Section 2.6 below describes how to convert a “distributional” oracle as obtained in Theorem 2.11 into
a standard oracle; the next corollary then follows.

Corollary 2.12. Assuming Conjecture 2.6, there is an oracle O such that BQPO 6⊆ PHO.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 822

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

2.6 Distributional vs. standard oracles

For completeness we include this argument; a similar proof8 appears in [2].
Let D1 = {D1,n},D2 = {D2,n} be ensembles of random variables over 2g(n)-bit strings (and assume

g(n) ≤ poly(n) is injective and easily computable) for which BQLOGTIME can distinguish the two
distributions but AC0 cannot. Then when D1 and D2 are viewed as distributions on (truth-tables of)
oracles, there is a BQP oracle machine that distinguishes the two distributions, but no PH oracle machine
can distinguish them. Specifically, we have that there exists a BQP oracle machine A for which

Pr[AD1(1n) = 1]−Pr[AD2(1n) = 1]≥ ε

while for every PH oracle machine M,

Pr[MD1(1n) = 1]−Pr[MD2(1n) = 1]≤ δ ,

and we have ε > δ for sufficiently large n≥ n0.
We now convert the distributions on oracles into a single oracle O for which BQPO 6⊂ PHO. Let L be

a uniformly random unary language in {1}∗. For each n, if 1n ∈ L, sample a 2g(n)-bit string x from D1
and define oracle O restricted to length g(n) so that x is its truth table; otherwise sample a 2g(n)-bit string
x from D2 and define oracle O restricted to length g(n) so that x is its truth table.

We will show that conditioned on AO(1n) = L(1n) for all n ≥ n0, we still have L /∈ PHO with
probability 1 over the choice of L and O. Let T (n) be the event that AO(1n) = L(1n), and for each PH
machine M and let SM(n) be the event that MO(1n) = L(1n). Note that T (n),SM(n) are each independent
of T (n′),SM(n′) for n′ 6= n. Then we have for n≥ n0:

Pr[T (n)] = (1/2) ·Pr[AD1(1n) = 1]+ (1/2) ·Pr[AD2(1n) = 0]≥ 1/2+ ε/2

and

Pr[SM(n)] = (1/2) ·Pr[MD1(1n) = 1]+ (1/2) ·Pr[MD2(1n) = 0]≤ 1/2+δ/2

and thus

Pr
L,O

[SM(n)|T (n)] = Pr[SM(n)∧T (n)]
Pr[T (n)]

≤ Pr[SM(n)]
Pr[T (n)]

≤ 1+δ

1+ ε
< 1 .

So by independence of different input lengths:

Pr
L,O

[
SM(n0)∧SM(n0 +1)∧SM(n0 +2)∧·· ·

∣∣ T (n0)∧T (n0 +1)∧T (n0 +2)∧·· ·
]
= 0 .

The number of possible PH machines is countably infinite, so by a union bound,

Pr
L,O

[
∃M SM(n0)∧SM(n0 +1)∧SM(n0 +2)∧·· ·

∣∣ T (n0)∧T (n0 +1)∧T (n0 +2)∧·· ·
]
= 0 .

So conditioned on AO(1n) = L(1n) for all n≥ n0, we have L /∈ PHO with probability 1 over the choice of
L and O. Thus (by hardwiring L(n) for n < n0 in the BQP machine), there exists an oracle O for which
BQPO 6⊂ PHO.

8Our proof differs in one respect: the conditioning on T (n), which allows us to handle any pair of ε,δ with some separation.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 823

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

3 Toward pseudorandom generators with short seed for small space

In this section we prove that the pseudorandom generator construction of [25] with seed length
O(logn log logn) yields distributions that are unpredictable by poly logn-width branching programs.
This result was also observed by other researchers. However, to the best of our knowledge, it has not
been published before. We start by reviewing the construction [25] as presented in [35].

3.1 The Impagliazzo–Nisan–Wigderson pseudorandom generator

We require the standard notions of “width S read-once oblivious branching programs” (abbreviated
ROBPs) and “(k,η)-extractors.” Both these notions are defined next.

Width S read-once oblivious branching programs (ROBPs). These are directed graphs where the
node set V is partitioned into n+1 layers V0, . . . ,Vn each of size at most S. Each node v in layer i < n has
two outgoing edges (one labelled by “0” and one labelled by “1”) that go to nodes in layer i+1. On input
x ∈ {0,1}n, such a graph defines a path from the first node in the first layer (which we think of as the
starting node) to a node in layer n+1 by following the edges labelled by x one by one. The output is the
node at the end of the path.

(k,η)-extractors. These were introduced in [34] and are functions E : {0,1}r×{0,1}d → {0,1}m

with the property that for every distribution X over {0,1}r that is uniform over a set of size ≥ 2k, the
distribution E(X ,Ud) is η-close to uniform.

The INW generator. Let S = 2s be the width of the ROBPs that we aim to fool. Let η > 0 be a
parameter that we determine later. Let r0 =C · (s+ log(1/η)) where C≥ 1 is a constant to be determined
later. The construction will rely on (r− s− log(1/η),η)-extractors E : {0,1}r×{0,1}d → {0,1}r for
r ≥ r0 and d = O(s+ log(1/η)). We stress that there are explicit constructions with these parameters for
a sufficiently large universal constant C [17], and that the dependence of d on both s and η is optimal up
to constant factors.

Definition 3.1. For 0≤ j ≤ logn we define functions G j : {0,1}r0+ jd →{0,1}2 j
iteratively as follows:

G0(x) is defined to be the first bit of x. For j > 0, we think of the input of G as a concatenation of two
strings: x ∈ {0,1}r0+(j−1)d ,y ∈ {0,1}d and set

G j(x,y) := G j−1(x)◦G j−1(E(x,y)) .

The final generator is given by G := Glogn and has seed length O(logn(s+ log(1/η)) and output length n

The analysis and the log2 n barrier. The analysis of [25] shows that for every j, if G j is a pseudoran-
dom generator with error ε j then G j+1 is a pseudorandom generator with error 2ε j +η . Summing up, this
gives that the error of G = Glogn is bounded by O(nη), which forces setting η < 1/n to get a meaningful
result. This setting implies in turn that the seed length is at least Ω(log2 n) even for constant s. Recent
work by [11, 29, 12] shows that for restricted classes of small width ROBPs the INW generator described

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 824

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

above yields pseudorandom generators with seed length Õ(logn). The key is that for restricted classes of
branching programs (like regular branching programs) a tighter connection between the error of G j and
G j+1 can be made, improving the bound on the distinguishing error of the final generator. As explained
in Section 3.2 below, the error loss in this connection may be seen as arising from the hybrid argument, so
in this sense these works are “beating the hybrid argument.” However, [12] show that these constructions
cannot achieve seed length o(log2 n) for general branching programs, in the sense that there are choices
of extractors E for which the INW generator cannot be pseudorandom even for constant-width ROBPs if
we set η much larger than 1/n so as to obtain seed length o(log2 n).

The main technical contribution of this section is to show that if the goal is unpredictability instead of
indistinguishability, then INW can be shown to work with seed length Õ(logn).

3.2 Shooting for an unpredictable distribution

We now consider the goal of showing that the output of G is “unpredictable” meaning that no width
S = 2s ROBP can predict the i’th bit with advantage larger than some parameter δ . This is stated in the
theorem below.

Theorem 3.2. Fix η > 0 and let Z = (Z1, . . . ,Zn) denote the output distribution of G in Definition 3.1
above on a uniformly chosen seed. Then, for every width S = 2s ROBP P and every 0≤ i≤ n we have

Pr[P(Z1, . . . ,Zi−1) = Zi]≤
1
2
+δ ,

for δ = O(η logn).

The high level idea of the proof is to show that if G j is unpredictable with advantage δ then G j+1
is unpredictable with advantage δ +O(η). Comparing to the analysis showing pseudorandomness, the
advantage is that we don’t double the error when going from level j to level j+1. Loosely speaking,
this is because the analysis showing unpredictability of G j+1 only pays for one of the two instantiations
of G j. This allows us to get meaningful results even for relatively large η � 1/n. For example, let
s = O(log logn) (which gives S = (logn)O(1)) and let η = 1/ log2 n. For these settings, G uses a seed of
length O(logn · log logn) and produces a distribution which is unpredictable for δ = O(1/ logn).

The doubling loss mentioned above arises from a use of the hybrid argument in the proof [25]. Thus
our result can be viewed as avoiding this loss when one imposes the restriction that the distinguisher
branching program is a predictor.

Proof of Theorem 3.2. Let P be a width S = 2s ROBP. We say that P predicts G j with advantage δ if
there exists an i such that Pr[P(Z1, . . . ,Zi−1) = Zi]> 1/2+δ where Z1, . . . ,Zn are sampled by applying
G j on a uniformly chosen seed. We show that:

Claim 3.3. For j > 1 if P predicts G j with advantage δ then there exists a width S ROBP P′ that predicts
G j−1 with advantage δ −2η .

Theorem 3.2 follows from Claim 3.3 by noting that if P predicts G = Glogn with advantage δ then
by iteratively applying Claim 3.3 there exists a branching program P′ which predicts G0 with advantage
δ −2η logn. This is a contradiction if the latter quantity is greater than zero.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 825

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

We now proceed with the proof of Claim 3.3. We have that P predicts position i in the output of G j

from the previous i−1 positions. Recall that the output of G j is obtained by setting r = r0 +(j−1)d,
uniformly sampling X ∈ {0,1}r,Y ∈ {0,1}d and then

G j(X ,Y) = G j−1(X)◦G j−1(E(X ,Y)) .

If position i appears in the first half of the output then P also predicts G j−1 with the same advantage
and we are done.

Otherwise, let i′ = 2 j−1 denote the last position in the first application of G j−1 and we have that
i > i′. Let W denote the random variable defined by considering the node that P arrives to after reading
bits 1, . . . , i′. We say that a node w at layer i′+1 is light if

Pr[W = w]≤ 2−(s+log(1/η)) = η/S .

Note that:
Pr[W is light] = ∑

light w∈Vi′+1

Pr[W = w]≤ ∑
w∈Vi′+1

η/S≤ η .

It follows by an averaging argument that there exists w′ ∈Vi′+1 which is not light such that P predicts
G j(X ,Y) with advantage δ −η even conditioned on event {W = w′}. Note that positions 1, . . . , i′ in the
output of G j(X ,Y) depend on X but not on Y . Thus, conditioning on {W = w′} amounts to conditioning
X to be in some subset T . We have that

Pr[W = w′]≥ 2−(s+log(1/η))

which gives that T ⊆ {0,1}r is of this weight. Therefore, conditioned on {W = w′}, X is uniformly
distributed in a set of size ≥ 2r−(s−log(1/η)) which by the properties of extractors gives that E(X ,Y) is
η-close to uniform conditioned on {W = w′}.

Let P′ denote the graph obtained by taking only layers i′, . . . , i from P. In P′ we set w′ as the starting
node (by renaming the nodes in the relevant layer). Note that P′ is a width S ROBP defined for inputs
of length i− i′−1. Furthermore, P′ predicts G j−1(E(X ,Y)) with advantage δ −η when conditioned on
{W = w′}. As E(X ,Y) is η-close to uniform conditioned on {W = w′}, we conclude that P′ predicts
G j−1 with advantage at least δ −2η when the input to G j−1 is chosen at random. This concludes the
proof.

Following Theorem 3.2, an alternative route to pseudorandom generators for small width ROBPs
is to convert unpredictability to indistinguishability while avoiding the cost of the hybrid argument. A
concrete question is whether the following construction, which applies an extractor to the output of
the INW construction, is pseudorandom: let G = Glogn be the generator from Theorem 3.2 instantiated
with η = 1/ logΘ(1) n and let E ′ : {0,1}n×{0,1}O(logn)→{0,1}m be a (k,1/n)-extractor for k,m = nΘ(1)

[49, 21]; the final construction is G′(x,z) = E ′(G(x),z), which has seed length O(logn · log logn). The
intuition is that an unpredictable distribution has high entropy from the point of view of small width
ROBPs and therefore applying an extractor may produce a pseudorandom distribution. (See [7] for a study
on using extractors to produce pseudorandom distributions.) This approach is inspired by a pseudorandom
generator construction of [40] in the setup of small circuits. More precisely, [40] instantiate the NW

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 826

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

generator with a function that is only mildly hard on average giving a distribution which is unpredictable,
but for δ which is too large to apply the hybrid argument. They are able to show that applying an extractor
on their unpredictable distribution produces a pseudorandom distribution.9

4 Beating the hybrid argument

In this section we show how to beat the hybrid argument for the “repeated sampling generator” in the
context of several low-level circuit classes. First we note that even for this goal, it is necessary to use
non-black-box techniques.

4.1 Breaking the repeated sampling generator

For a distribution D, we denote by D⊗k the concatenation of k independent samples of D.

Fact 4.1. There is c > 0 such that for any n and ε ≥ 1/2n/c such that log1/ε is an integer: there exists a
(non-explicit) function f : {0,1}n→{0,1} such that (1) for any circuit C of size s≤ 2n/c,

Pr
x∈{0,1}n

[C(x) 6= f (x)]≥ 1/2− ε ,

and (2) there is a poly(n/ε)-size DNF distinguishing (X , f (X))⊗c/ε from uniform with probability ≥ 0.9.

Proof. Let x = (y,z) where |y| = log(1/ε)+ 1, and |z| = n− |y| ≥ n/2 (for c large enough). Let h :
{0,1}|z|→{0,1} be a function such that for a universal constant d, any circuit D of size ≤ 2n/d satisfies

Pr
x∈{0,1}n

[D(x) 6= f (x)]≥ 1
2
− 1

2n/d .

The existence of such a function h follows from a counting argument.
Now define f (y,z) as h(z) if y 6= 0, and 0 otherwise.
To see (1), note that for any circuit C of size ≤ 2n/d , if Prx∈{0,1}n [C(x) = f (x)]≥ 1/2+ ε then

1/2+ ε ≤ Pr[C(x) = f (x)]

≤ Pr[C(y,z) = f (y,z)|y 6= 0]+Pr[y = 0]

= Pr[C(y,z) = h(z)|y 6= 0]+ ε/2 ,

and so there exists a fixed y so that, denoting by Cy the circuit of size ≤ 2n/d obtained by hardwiring y
into C,

Pr[Cy(z) = h(z)]≥ 1/2+ ε/2≥ 1/2+1/2n/c+1 .

This contradicts the hardness of h (which is 2n/d) for any c > d and n large enough.

9For context, we remark that this result in [40] is not known to hold for restricted circuit classes such as AC0[p]. The specific
proof in [40] fails because at its heart lies hardness amplification (specifically the hard-core set lemma [24]) which in these
restricted classes is either not known to hold or false [37, 30].

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 827

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

To see (2), consider the distributions

⊗i≤c/ε(y
i,zi, f (yi,zi)) (?)

and

⊗i≤c/ε(y
i,zi,bi) (U)

where bi is a uniform random bit, and ⊗ denotes concatenation.
In either distribution, we expect c/ε · ε/2 = c/2 values yi to be 0. Increasing c, we can guarantee

that with probability arbitrarily close to 1 we will see an arbitrarily large number of yi = 0. The CNF T
defined as ∀i,yi = 0⇒ bi = 0 accepts (?) with probability 1, by definition. On the other hand, T accepts
(U) with probability less than 0.01, for a sufficiently large c, because every clause where yi = 0 has only
probability 1/2 of being true.

4.2 Using resamplability

In this section we identify a property of functions that allows us to avoid the loss in the hybrid argument.
We call this property resamplability. For exposition, it is convenient to work with “problems” rather
than functions. So we start by discussing the connection between functions and problems. There are two
natural ways to define a problem given a function. The first corresponds to the notion of resamplability
described in the introduction:

Definition 4.2 (Π(f)). Let f : {0,1}n→{0,1} be a function. We define the problem Π(f) as

Π(f)Y := {(x, f (x)) : x ∈ {0,1}n} ,
Π(f)N := {(x,1− f (x)) : x ∈ {0,1}n} .

The second way is:

Definition 4.3 (Π′(f)). Let f : {0,1}n→{0,1} be a function. We define the problem Π′(f) as

Π
′(f)Y := {x ∈ {0,1}n : f (x) = 1} ,

Π
′(f)N := {x ∈ {0,1}n : f (x) = 0} .

For most of our results one can work with either Π(f) or Π′(f); our default is to work with Π(f).
However we only know how to obtain the result in Section 4.5 working with Π′(f).

We now define resamplability.

Definition 4.4. A problem Π = ΠY
⋃

ΠN is resamplable with resources T (e. g., T = circuits of size n2)
if there are functions Rr(·) such that:

1. for any x ∈ΠY (resp., x ∈ΠN), the distribution Rr(x) for uniform r is uniform in ΠY (resp., ΠN);
and

2. for any fixed r, the function Rr(·) is computable with resources T .

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 828

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

The next lemma uses resamplability to prove that the repeated sampling generator suffers no loss in
the distinguishing parameter.

Lemma 4.5. Suppose a problem Π = ΠY
⋃

ΠN (ΠY
⋂

ΠN = /0) has a resampler Rr(·). If a function C
distinguishes k independent samples of ΠY from k independent samples of Π with probability ε , i. e.,∣∣Pr[C(Π⊗k

Y) = 1]−Pr[C(Π⊗k) = 1]
∣∣≥ ε ,

then there is a function function C′ of the form C′(x) :=C(R̄1(x), . . . , R̄k(x)) where each R̄i is either the
resampler Rri(x) for a fixed string ri, or is just a constant function π i ∈ΠY , such that C′ distinguishes ΠY

from ΠN with the same probability ε , i. e.,∣∣Pr[C′(ΠY) = 1]−Pr[C′(ΠN) = 1]
∣∣≥ ε .

Note that resamplability naturally gives rise to a reduction strategy that would show that distinguishing
Π
⊗k
Y from Π

⊗k
N is as hard as distinguishing ΠY from ΠN ; the innovation in the proof below is that it is

able to replace Π
⊗k
N with Π⊗k.

Proof of Lemma 4.5. Let B1, . . . ,Bk ∈ {Y,N} be independent bits coming up Y with probability |ΠY |/|Π|.
Note that the distribution Π1,Π2, . . . ,Πk equals the distribution Π1

B1 ,Π
2
B2 , . . . ,Π

k
Bk . By averaging, there

exists a way to fix each variable Bi to a value bi such that∣∣∣Pr[C
(

Π
1
Y ,Π

2
Y , . . . ,Π

k
Y

)
= 1]−Pr[C

(
Π

1
b1 ,Π

2
b2 , . . . ,Π

k
bk

)
= 1]

∣∣∣≥ ε .

In both distributions in the above equation, the coordinates where bi = Y are the same, and the others are
different. Consider the randomized map F(x) := (R1(x), . . . ,Rk(x)) where Ri(x) is a uniform element of
ΠY if bi = Y , and is the resampler Rri(x) for a uniform ri if bi = N. Then the previous equation implies∣∣∣Pr[C(F(ΠY)) = 1]−Pr[C(F(ΠN)) = 1]

∣∣∣≥ ε .

Fixing the internal randomness of F we obtain the desired conclusion for C′(·) :=C(F(·)).

To demonstrate the usefulness of Lemma 4.5 let us elaborate on its consequences for the promise
problem Π(f) defined above: For Π = Π(f) we get that Π

⊗k
Y is the k · (n + 1) bit long output of

the repeated sampling generator G⊗k
f while Π⊗k is the uniform distribution on k · (n+ 1) bit strings.

Consequently, Lemma 4.5 establishes the pseudorandomness of G⊗k
f assuming f is hard on average (with

no quantitative loss in the distinguishing parameter).
In the next sections we discuss cases in which resamplability yields new results. We start with the

simplest setting, that of the parity function. Then we move to majority, which requires some extra tricks.
Then we discuss the use of a problem introduced by Ishai and Kushilevitz [26, 27]. We also mention
a possible alternative approach to get some of our generators. Finally we observe that resamplability
implies a worst-case vs. average-case connection.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 829

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

4.3 Generators based on parity

First we note the efficient resamplability of parity.

Fact 4.6. The problem Π(parity) is resamplable in (poly-size) NC0.

Proof. The resampler Rr(x,b) uses the first bit of r to select a bit c and the remaining bits to select a string
y of length |x| with parity c. It outputs the pair (x⊕ y,b⊕ c). For fixed r, this amounts to complementing
some input bits, which can be done in NC0.

Combining this fact with Lemma 4.5 we obtain new pseudorandom distributions for low-level
circuit classes. We start with the class of AC0 circuits with mod p gates—denoted AC0[p], for an odd
prime p. The strongest known hardness result for this class is the following well-known result by
Smolensky [38, 39] (cf. [14]).

Lemma 4.7 ([39]). For every d and prime p > 2, there is a constant α > 0 such that the n-bit parity
function is ε-hard, with ε = n−1/2+o(1), for AC0[p] circuits of size ≤ 2nα

.

Equivalently if X is a random variable uniformly distributed on {0,1}n, then (X ,parity(X)) is ε-
pseudorandom for such circuits. (Cf. Section 1.3 for the definition of hard and pseudorandom.) The
following corollary shows that this pseudorandomness does not decay with the number of repeated
experiments.

Corollary 4.8. Fix a prime p 6= 2 and d ≥ 1. For every k ≤ 2no(1)
, every poly(n,k)-size AC0[p] circuit C

of depth d satisfies ∣∣∣Pr
[
C
(
(X ,parity(X))⊗k

)
= 1
]
−Pr[C(U) = 1]

∣∣∣≤ o(1) ,

where X is uniformly distributed on {0,1}n, and U is the uniform distribution over k · (n+ 1) bits.
Moreover, there is an explicit generator G : {0,1}n(1−1/poly lgn)→{0,1}n that is o(1)-pseudorandom for
AC0[p] circuits C of depth d and size 2lgd n.

Proof. This proof follows from the combination of Lemma 4.5, Fact 4.6, and Smolensky’s Lemma 4.7.

For the interesting case of p = 2, this proof does not work. In Section 4.5 we obtain similar generators
using the machinery of [27].

The distribution induced by the generator in Corollary 4.8 has the appealing feature that it can be
equivalently generated by an NC0 circuit such that each output bit depends on just 2 input bits. This can
be obtained using the corresponding “trick” for parity which is explained for example in [44].

We now consider the class AC0 with a limited number of majority gates. When the number of
majority gates is logarithmic in the size of the circuit, strong (approaching 1/2 superpolynomially fast)
average-case lower bounds that allow for superpolynomial-stretch generators are known [41]. But when
the number of majority gates is larger, say polynomial in the circuit size, the best average-case hardness
result remains the one proved by Beigel [8, Corollary 4.4] building on the seminal lower bound by Aspnes,
Beigel, Furst, and Rudich [6].

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 830

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

Lemma 4.9 ([6, 8]). For any d there is α > 0 such that for any And-Or-Majority-Not circuit of depth d,
size ≤ 2nα

, with at most nα majority gates,

Pr
x∈{0,1}n

[C(x) = parity(x)]≤ 1/2+o(1) .

Actually [8, Corollary 4.4] has 1/4 instead of o(1), but the same techniques give o(1).

Combining Lemmas 4.9, 4.6, and 4.5, and using the fact that the reduction does not increase the
number of majority gates one gets new generators for small-depth circuits with few majority gates. We
only state the particular tradeoff where the number of majority gates is polynomial.

Corollary 4.10. For every d ≥ 1,δ ∈ (0,1) there is ε > 0 such that for large enough n there are explicit
generators G : {0,1}n(1−1/nδ)→{0,1}n such that for any And-Or-Majority-Not circuit C of depth d, size
≤ 2nε

, with ≤ nε majority gates,∣∣∣∣∣ Pr
s∈{0,1}n(1−1/nδ)

[C(G(s)) = 1]− Pr
x∈{0,1}n

[C(x) = 1]

∣∣∣∣∣≤ o(1) .

4.4 A generator based on majority

We begin by remarking that we do not know of a resampler for Π(majority) (nor Π′(majority)), so this
setup is a bit more complicated. We require a generalization of Definition 4.4 and Lemma 4.5, in which
the “resampler” Rr(·) maps a source problem WY

⋃
WN to a target problem ΠY

⋃
ΠN . We furthermore

relax the requirement on the output of the resampler Rr(·), and allow the output distribution to be only
η-close to the target distribution (for some parameter η > 0).

More precisely, we consider a revised notion of Definition 4.4 in which part (1) of the definition is
replaced with: for any x ∈WY (resp. WN), the distribution Rr(x) for uniform r is η-close to the uniform
distribution over ΠY (resp. ΠN). The argument of Lemma 4.5 can be used in exactly the same way to
reduce an ε-distinguisher for Π

⊗k
Y vs. Π⊗k to an (ε−k ·η)-distinguisher for WY vs. WN . In the application

below, η = exp(−nΩ(1)) is very small so that the loss of k ·η is insignificant for polynomial k.
We will now implement this plan for the majority function. Our target problem is Π = Π(majority)

on odd n. Namely, for odd n, let

ΠY = {(y,majority(y)) : y ∈ {0,1}n} and ΠN = {(y,1−majority(y)) : y ∈ {0,1}n} .

This is done so that Π
⊗k
Y is the output of the repeated sampling generator and Π⊗k is the uniform

distribution on strings of length k · (n+1).
Our source problem is W =WY

⋃
WN defined as follows: for odd `, WY is the set of `-bit strings of

hamming weight (`+ 1)/2 and WN is the set of those strings of weight (`− 1)/2. Distinguishing WY

from WN is hard:

Lemma 4.11 ([22]). For any constants d ≥ 1,ε > 0, poly(`)-size AC0 circuits of depth d cannot distin-
guish WY from WN with gap greater than ε .

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 831

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

Only a worst-case lower bound is stated in [22], but the stated average-case result follows using
standard techniques [2, 37].10 The next step is to show a resampler from W to Π.

Lemma 4.12. There is a function t = poly(`) and a distribution Rr(·) on AC0 circuits of size poly(`)
mapping ` bits to n = ` · t bits, such that

• for any x ∈WY , Rr(x) has statistical distance exp(−nΩ(1)) from uniform in ΠY , and

• for any x ∈WN , Rr(x) has statistical distance exp(−nΩ(1)) from uniform in ΠN .

As a corollary we obtain the following result (which we state for only polynomially many repetitions
k, because this is all that is needed for the special case of Conjecture 2.6).

Corollary 4.13. For any constant d ≥ 1 and any function k = poly(n), every poly(n)-size AC0 circuit C
of depth d satisfies ∣∣∣Pr

[
C
(
(X ,majority(X))⊗k

)
= 1
]
−Pr[C(U) = 1]

∣∣∣≤ o(1) ,

where X is uniformly distributed on {0,1}n, and U is the uniform distribution over k · (n+1) bits.

The proof of Corollary 4.13 follows by combining Lemma 4.11 with the version of Lemma 4.5 discussed
above instantiated with the resampler of Lemma 4.12. We now present the resampler required for
Lemma 4.12.

Proof of Lemma 4.12. Let t = t(`) be odd. Let Dt be a probability distribution over {0, . . . , t} that we
specify later. On input x ∈ {0,1}` the resampler R will use the randomness r to do the following: Pick
i at random according to the distribution Dt . Concatenate 2i+1 copies of x with a balanced string on
(t− (2i+1))` bits, and let y denote a random permutation of the obtained string. Note that if x ∈WY , the
hamming weight of y is (n+1)/2+ i and majority(y) = 1, while if x ∈WN , the hamming weight of y is
(n−1)/2− i and majority(y) = 0. The final output of the resampler is obtained by flipping a coin and
outputting (y,1) or (y⊕1n,0) depending on the coin flip. Note that for every setting of random coins r of
the resampler we indeed have that (1) if x ∈Wy then Rr(x) ∈ΠY , and (2) if x ∈Wn then Rr(x) ∈ΠN .

For every x ∈WY ∪WN the distribution of the first argument of Rr(x) is the same (and does not
depend on x). Let us denote this random variable by z. To conclude the proof it is sufficient to choose a
distribution Dt over i so that z is exp(−nΩ(1))-close to uniform.

We now describe the distribution Dt for choosing i. We select i ∈ {0, . . . , t} with the probability given
by the uniform distribution to strings of weight (n+1)/2+ i, normalized to give a probability distribution.
Since n = `t, by letting t be a sufficiently large polynomial in ` and using a Chernoff bound, the statistical
distance between z and the uniform distribution is exp(−nΩ(1)).

10Specifically, one can use the fact that the problem is resamplable (just permute input bits) and the fact that approximate
majority is in AC0 [3, 4] (cf. [42]) to show that any small AC0 circuit distinguishing WY from WN with gap ε ≥Ω(1) can be
transformed into a small AC0 circuit solving W in the worst case.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 832

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

4.5 Generators based on L-hardness

We consider the problem, introduced by Ishai and Kushilevitz [26, 27], of distinguishing certain matrices
with full rank from rank full−1. This problem is used to great effect in several works, e. g., [5, 18, 19], and
we use the name CMD (for connectivity matrix determinant) from [18]. For a self-contained exposition
of this problem and the properties we shall need, see [43, Chapter 4].

Definition 4.14 ([26, 27]). An input to the problem CMD is an n×n matrix A that has 0/1 entries on the
main diagonal and above it, 1 on the second diagonal (one below the main), and 0 below this diagonal.
The matrix A is represented by the n(n+1)/2 entries on and above the main diagonal. Each such matrix
has rank ≥ n−1. CMDY are matrices with full rank n over GF(2), CMDN are matrices with rank n−1.

Note that the above definition corresponds to Π′(f) where f is the boolean function that given a
matrix as above outputs 1 iff the matrix has full rank, cf. Definition 4.3.

In [27] various useful properties are established. First, note CMD is balanced, i. e., |CMDY | =
|CMDN |. To see this, imagine choosing a random matrix in the definition of CMD by first choosing all
rows except the first. This yields an n−1 dimension vector space, and the matrix will have full rank n if
and only if the first row will land outside of this space, which happens with probability 1/2.

Second, CMD is hard for log-space computation, and in fact is complete for the richer complexity
class ⊕L, under NC0 reductions, i. e., maps such that each output bits depends on just a constant number
of input bits.

Lemma 4.15 ([27]). CMD is ⊕L-complete under NC0 reductions.

Finally, the techniques in [27] also show that CMD is resamplable in AC0[2].

Lemma 4.16 ([27]). CMD is resamplable in poly-size AC0[2].

Proof sketch. There are two distributions A,B over n× n matrices such that for every M ∈ CMDY

(resp., M ∈ CMDN) the product AMB is uniform over CMDY (resp., CMDN). The resampler is thus
RA,B(M) := AMB. Since the multiplication is over GF(2), this can be computed by a poly-size AC0[2]
circuit.

We use another result by Smolensky, that majority is hard for AC0[2]. See [14] for an exposition.

Lemma 4.17 ([39]). For any AC0[2] circuit C of size s and depth d we have

Pr
x∈{0,1}n

[C(x) = majority(x)]≤ 1
2
+

O(log(Sn))d
√

n
+

1
n
.

We can now state our generator against AC0[2].

Corollary 4.18. For every d there is c such that for large enough n there is an explicit generator
G : {0,1}n(1−1/ lgc n)→{0,1}n such for any AC0[2] of depth d and size 2lgd n:∣∣∣∣ Pr

s∈{0,1}n(1−1/ lgc n)
[C(G(s)) = 1]− Pr

x∈{0,1}n
[C(x) = 1]

∣∣∣∣≤ o(1) .

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 833

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

Towards the proof of the corollary we record the following standard fact.

Fact 4.19. Let f : {0,1}n→{0,1} be a balanced function, and let C : {0,1}n→{0,1} be any function.
Then

Pr
x
[C(x) = f (x)] =

1
2
+

1
2
·
(

Pr
x: f (x)=1

[C(x) = 1]− Pr
x: f (x)=0

[C(x) = 1]
)
.

Proof of Corollary 4.18. By Lemma 4.17 and Fact 4.19, circuits of the given resources satisfy∣∣∣∣∣ Pr
x∈{0,1}lga n

majority(x)=1

[C(x) = 1] − Pr
x∈{0,1}lga n

majority(x)=0

[C(x) = 1]

∣∣∣∣∣≤ o(1) , (?)

where the probability is over inputs of length lga n, for a constant a depending only on p,d.
Note that majority is computable in logarithmic space, and recall that CMD is hard for logarithmic

space under NC0 reductions (Lemma 4.15). In addition, CMD is resamplable (Lemma 4.16). The
combination of these facts implies that circuits of the given resources satisfy∣∣Pr[C(CMDY) = 1]−Pr[C(CMDN) = 1]

∣∣≤ o(1) ,

where the probability is over inputs of length lgb n, for a constant b depending only on p,d. This holds
because if some circuit C violates the above, on input a majority instance we can apply the reduction to
CMD, and then the resampler, to violate equation (?).

The output of the generator G is a k-tuple of strings representing CMDY instances. Recall that CMD
is balanced, i. e., |CMDY | = |CMDN |, so the seed length is (lgb n− 1)n/ lgb n = n(1− 1/ lgb n). The
correctness follows from Lemma 4.5.

Note that the proof in Section 4.4 won’t work, because W is solvable just by computing the parity
of the instance. It is open if (x,majority(x))⊗k is pseudorandom for small AC0[2] circuits for every
k = poly(n).

We also get the following conditional result for AC0[m] for every even m. For simplicity we state it
for m = 6.

Corollary 4.20. Suppose that L 6⊆ AC0[6]. Then for every d > 1 and any δ ∈ (0,1), for large enough n
there is an explicit generator G : {0,1}n(1−1/nδ)→{0,1}n such for any AC0[6] circuit of depth d and size
nd: ∣∣∣∣∣ Pr

s∈{0,1}n(1−1/nδ)

[C(G(s)) = 1]− Pr
x∈{0,1}n

[C(x) = 1]

∣∣∣∣∣≤ o(1) .

Proof. Since CMD is hard for L, the assumption implies that poly(n)-size AC0[6] circuits fail to compute
CMD on instances of length nδ . Since CMD is resamplable (Lemma 4.16) we can apply Proposition 4.21
to argue that poly(n)-size AC0[6] circuits C satisfy

|Pr[C(CMDY) = 1]−Pr[C(CMDN) = 1]| ≤ o(1) ,

where the probabilities are over instances of length nδ .
The output of the generator G is a k-tuple of strings representing CMDY instances of length nδ . Recall

that CMD is balanced, i. e., |CMDY |= |CMDN |, so the seed length is (nδ −1)n/nδ = n(1−1/nδ). The
correctness follows from Lemma 4.5.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 834

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

4.6 On a possible alternative way to get generators for AC0[p]

In this section we sketch a possible alternative approach to get generators with seed length n(1−
1/poly logn) that fool AC0[p] circuits, p prime, on n bits. As stated in Lemma 4.17, these circuits cannot
compute majority on instances of an appropriate length poly logn with probability ≥ 1/2−o(1). From
this, it follows via techniques by Shaltiel and Viola [37] that there exists some integer c≤ poly logn so
that the circuits cannot distinguish (with any constant advantage) the uniform distribution from i. i. d. bits
coming up 1 with probability 1/2+1/c.

If we know c, the generator that outputs i. i. d. bits coming up 1 with probability 1/2+1/c has seed
length H(1/2+1/c)n≤ n(1−1/poly logn), where H is the binary entropy function. Up to the poly logn,
this is of the same type we get using resamplers.

However, we have been unable to determine if c is explicitly computable, though it is even possible
that most values for c will do.

4.7 Resamplability and worst-case to average-case reductions

We now observe that resamplability implies a worst-case to average-case connection. The proposition
below first states a connection for general promise problems and then draws a corollary for problems of
the form Π(f) and Π′(f) for a function f . Recall the problems were defined in Section 4.2.

Proposition 4.21. Consider unbounded fan-in circuits on any set of gates including And, Or, and Not.
For every ε > 0 and sufficiently large n the following holds: Let Π = ΠY

⋃
ΠN ⊆ {0,1}n be a problem

that is resamplable by circuits of size sR and depth dR. If there is a circuit C of size s and depth d such
that

|Pr[C(ΠY) = 1]−Pr[C(ΠN) = 1]| ≥ ε

then there is a circuit C′ of size poly(n,sR,s) and depth dR +d +O(1) that solves Π on every input.
In particular, let f : {0,1}n→{0,1} be a function that is balanced and such that the problem Π(f)

(resp. Π′(f)) is resamplable by circuits of size sR and depth dR. If there is a circuit C of size s and depth
d such that

Pr
x
[C(x) = f (x)]≥ 1/2+ ε

then there is a circuit C′ of size poly(n,sR,s) and depth dR +d +O(1) such that C′(x) = f (x) for every x.

Proof of Proposition 4.21. Let R be the resampler and consider the circuit C(R(·)). By definition of
resampler, on any input x ∈ΠY ,

Pr
R
[C(R(x)) = 1] = Pr[C(ΠY) = 1] =: pY ,

while on any input x ∈ΠN ,

Pr
R
[C(R(x)) = 1] = Pr[C(ΠN) = 1] =: pN .

By assumption, these two probabilities are bounded away by a constant ε > 0. Assume without loss of
generality that pY > pN .

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 835

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

Now consider, on any input x, repeating the computation C(R(x)) O(n/ε2) times in parallel with
independent choices for the resampler. By a Chernoff bound, if x ∈ ΠY then > pY − ε/2 fraction of
outputs will be 1 with probability > 1−2−n, while if x ∈ΠN then < pN + ε/2 fraction of outputs will be
1 with probability > 1−2−n.

By a union bound over all ≤ 2n inputs, we can fix the random choices for the resamplers so that this
holds on any input.

To conclude, we need to distinguish bit strings of length O(n/ε2) with > pY − ε/2 fraction of ones
from those with < pN + ε/2 fraction of ones. Since ε > 0 is a constant, this can be done by circuits of
polynomial size and depth 3 [3, 4].

The size and depth bounds are immediate by construction.
The “in particular” part follows for Π(f) by noting that the circuit C can be used to distinguish Π(f)Y

from Π(f)N with advantage 2ε: on input (x,b) output C(x)+b+1 mod 2.
The “in particular” part follows for Π′(f) using Fact 4.19.

Acknowledgments. We thank Scott Aaronson, Yi-Kai Liu, and Mike Saks for helpful discussions. We
also thank the anonymous referees for helpful feedback.

A A unitary matrix in which all rows participate

There is a tension between the triple goals of (1) having many pairwise orthogonal vectors, (2) maintaining
bounded pairwise intersections of the supports, and (3) having the supports large. It is natural to wonder
whether the above construction (in which we found a number of vectors equal to 1/2 the dimension of
the underlying space) is in some sense optimal. For example, is there some barrier to simultaneously
optimizing all three goals?

Here we show that one can indeed optimize all three goals at the same time, by specifying a
construction that builds on the “paired-lines” construction. Our construction will have as many pairwise
orthogonal vectors as the dimension of the underlying space (which is obviously as many as is possible);
it will have intersections sizes bounded above by 2 (the upper bound cannot be 0 without constraining
the product of the number of rows and the support sizes to be at most the dimension of the underlying
space, and no pairwise intersections can have cardinality one without violating orthogonality); the support
sizes will be at least the square root of the dimension of the underlying space (and one can’t exceed that
without having larger intersection sizes).

This construction is not needed for our main results, but we find it aesthetically pleasing that one can
optimize all three parameters in this way. We don’t know of a local decomposition for this matrix, and
we leave finding one as an intriguing open problem.

While the construction of Section 2.4.1 needed characteristic two, the present construction needs odd
characteristic. We fix Fq with q an odd prime power, and we choose a subset Q⊆ F∗q of size (q−1)/2
for which Q∩−Q = /0, where −Q = {−x : x ∈ Q}. Our vectors will have q2−1 coordinates, identified
with the punctured plane P = Fq×Fq \{(0,0)}.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 836

http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

We have three types of vectors in {0,−1,+1}P: first, for all a ∈ Fq and b ∈ Q

va,b[x,y] =

+1 x = 0,y = b ,
+1 x ∈ Q,y = ax+b ,
−1 x ∈ Q,y = ax−b ,
0 otherwise,

(A.1)

second, for all a ∈ Fq and b ∈ −Q

va,b[x,y] =

+1 x = 0,y = b ,
+1 x ∈ −Q,y = ax+b ,
−1 x ∈ −Q,y = ax−b ,
0 otherwise,

(A.2)

and finally, for each c ∈ F∗q

uc[x,y] =

{
+1 x = c,y ∈ Fq ,

0 otherwise.
(A.3)

Lemma A.1. The vectors defined in equations (A.1), (A.2) and (A.3) are pairwise orthogonal and their
supports form a (q,2)-design.

Proof. It is an easy computation to see that the support of each of the vectors has cardinality q. We
now argue that they are pairwise orthogonal. There are several cases depending on the two rows under
consideration:

1. va,b and va′,b′ : if one comes from equation (A.1) and the other from equation (A.2) then the supports
are disjoint. So we assume both come from equation (A.1) or both come from equation (A.2).

(a) Both come from equation (A.1) and b = b′: we have one intersection (0,b) (which contributes
+1 to the inner product) and exactly one of the following two intersection points:

(x =−2b/(a−a′),ax+b = a′x−b) or (x = 2b/(a−a′),ax−b = a′x+b) ,

which contributes −1 to the inner product. We have exactly one because the two x-values are
negations of each other, and non-zero, so exactly one is in Q.

(b) Both come from equation (A.1) and b 6= b′: we have exactly one of the following two
intersection points:

(x = (b′−b)/(a−a′),ax+b = a′x+b′) or (x = (−b′+b)/(a−a′),ax−b = a′x−b′) ,

which contributes +1 to the inner product, and exactly one of the following two intersection
points:

(x = (b′+b)/(a−a′),ax−b = a′x+b′) or (x = (−b′−b)/(a−a′),ax+b = a′x−b′) ,

which contributes −1 to the inner product. For each pair, there is exactly one of the pair
of possible intersection points because the two x-values are negations of each other, and
non-zero, so exactly one is in Q.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 837

http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

(c) Both come from equation (A.2) and b = b′: identical to case (1a) above, with −Q in place of
Q.

(d) Both come from equation (A.2) and b 6= b′: identical to case (1b) above, with −Q in place of
Q.

2. uc and u′c: these have disjoint supports for c 6= c′.

3. va,b and uc: if c ∈ Q, then the support of uc intersects the support of va,b only if va,b comes from
equation (A.1), and then we get one intersection at point (x = c,ax+b) which contributes a +1
to the inner product, and one intersection at point (x = c,ax−b) which contributes a −1 to the
inner product. If c ∈ Q, then the support of uc intersects the support of va,b only if va,b comes from
equation (A.2), and we have an identical argument, with −Q in place of Q.

This is a complete enumeration of cases, and in no case did we have more than 2 intersection points.

We conclude this section with a question: are these matrices related in some way to the DFT matrix
over some family of non-abelian groups (e. g., the affine group F∗q nFq), or are they indeed completely
different from the unitaries seen before in quantum algorithms?

References

[1] SCOTT AARONSON: A counterexample to the Generalized Linial-Nisan Conjecture. Electron.
Colloq. on Comput. Complexity (ECCC), 17:109, 2010. ECCC. 812

[2] SCOTT AARONSON: BQP and the polynomial hierarchy. In Proc. 42nd STOC, pp. 141–150. ACM
Press, 2010. See also in ECCC. [doi:10.1145/1806689.1806711] 812, 817, 818, 823, 832

[3] MIKLÓS AJTAI: Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic, 24(1):1–48, 1983.

[doi:10.1016/0168-0072(83)90038-6] 832, 836

[4] MIKLÓS AJTAI AND MICHAEL BEN-OR: A theorem on probabilistic constant depth computations.
In Proc. 16th STOC, pp. 471–474. ACM Press, 1984. [doi:10.1145/800057.808715] 832, 836

[5] BENNY APPLEBAUM, YUVAL ISHAI, AND EYAL KUSHILEVITZ: Cryptography in
NC0. SIAM J. Comput., 36(4):845–888, 2006. Preliminary version in FOCS’04.
[doi:10.1137/S0097539705446950] 833

[6] JAMES ASPNES, RICHARD BEIGEL, MERRICK L. FURST, AND STEVEN RUDICH: The expressive
power of voting polynomials. Combinatorica, 14(2):135–148, 1994. Preliminary version in
STOC’91. [doi:10.1007/BF01215346] 814, 830, 831

[7] BOAZ BARAK, RONEN SHALTIEL, AND AVI WIGDERSON: Computational analogues of entropy.
In Proc. 7th Internat. Workshop on Randomization and Computation (RANDOM’03), pp. 200–215.
Springer, 2003. [doi:10.1007/978-3-540-45198-3_18] 811, 826

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 838

http://eccc.hpi-web.de/report/2010/109/
http://eccc.hpi-web.de/report/2009/104/
http://dx.doi.org/10.1145/1806689.1806711
http://dx.doi.org/10.1016/0168-0072(83)90038-6
http://dx.doi.org/10.1145/800057.808715
http://dx.doi.org/10.1109/FOCS.2004.20
http://dx.doi.org/10.1137/S0097539705446950
http://dx.doi.org/10.1145/103418.103461
http://dx.doi.org/10.1007/BF01215346
http://dx.doi.org/10.1007/978-3-540-45198-3_18
http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

[8] RICHARD BEIGEL: When do extra majority gates help? Polylog(N) majority gates are equiv-
alent to one. Comput. Complexity, 4(4):314–324, 1994. Preliminary version in STOC’92.
[doi:10.1007/BF01263420] 814, 830, 831

[9] ETHAN BERNSTEIN AND UMESH V. VAZIRANI: Quantum complexity theory. SIAM J. Comput.,
26(5):1411–1473, 1997. Preliminary version in STOC’93. [doi:10.1137/S0097539796300921] 812

[10] MANUEL BLUM AND SILVIO MICALI: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984. Preliminary version in FOCS’82.
[doi:10.1137/0213053] 810

[11] MARK BRAVERMAN, ANUP RAO, RAN RAZ, AND AMIR YEHUDAYOFF: Pseudorandom genera-
tors for regular branching programs. In Proc. 51st FOCS, pp. 40–47. IEEE Comp. Soc. Press, 2010.
See also at ECCC. [doi:10.1109/FOCS.2010.11] 813, 824

[12] JOSHUA BRODY AND ELAD VERBIN: The coin problem, and pseudorandomness for branching pro-
grams. In Proc. 51st FOCS, pp. 30–39. IEEE Comp. Soc. Press, 2010. [doi:10.1109/FOCS.2010.10]
813, 824, 825

[13] JOAN FEIGENBAUM AND LANCE FORTNOW: Random-self-reducibility of complete sets. SIAM J.
Comput., 22(5):994–1005, 1993. Preliminary version in SCT’91. [doi:10.1137/0222061] 815

[14] YUVAL FILMUS: Smolensky’s polynomial method, 2010. See author’s home page. 830, 833

[15] ODED GOLDREICH: Foundations of Cryptography, Volume 1: Basic Tools. Cambridge Univ. Press,
2001. See also author’s home page. 810

[16] ODED GOLDREICH AND LEONID A. LEVIN: A hard-core predicate for all one-way functions. In
Proc. 21st STOC, pp. 25–32. ACM Press, 1989. [doi:10.1145/73007.73010] 810

[17] ODED GOLDREICH AND AVI WIGDERSON: Tiny families of functions with random prop-
erties: A quality-size trade-off for hashing. Random Structures & Algorithms, 11(4):315–
343, 1997. Preliminary version in STOC’94. See also at ECCC. [doi:10.1002/(SICI)1098-
2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1] 824

[18] SHAFI GOLDWASSER, DAN GUTFREUND, ALEXANDER HEALY, TALI KAUFMAN, AND GUY N.
ROTHBLUM: Verifying and decoding in constant depth. In Proc. 39th STOC, pp. 440–449. ACM
Press, 2007. [doi:10.1145/1250790.1250855] 833

[19] SHAFI GOLDWASSER, DAN GUTFREUND, ALEXANDER HEALY, TALI KAUFMAN, AND GUY N.
ROTHBLUM: A (de)constructive approach to program checking. In Proc. 40th STOC, pp. 143–152.
ACM Press, 2008. See also at ECCC. [doi:10.1145/1374376.1374399] 833

[20] SHAFI GOLDWASSER AND SILVIO MICALI: Probabilistic encryption. J. Comput. System Sci.,
28(2):270–299, 1984. [doi:10.1016/0022-0000(84)90070-9] 810

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 839

http://dx.doi.org/10.1145/129712.129755
http://dx.doi.org/10.1007/BF01263420
http://dx.doi.org/10.1145/167088.167097
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1109/SFCS.1982.72
http://dx.doi.org/10.1137/0213053
http://eccc.hpi-web.de/report/2010/035
http://dx.doi.org/10.1109/FOCS.2010.11
http://dx.doi.org/10.1109/FOCS.2010.10
http://dx.doi.org/10.1109/SCT.1991.160252
http://dx.doi.org/10.1137/0222061
http://www.cs.toronto.edu/~yuvalf/Smolensky.pdf
http://www.wisdom.weizmann.ac.il/~oded/foc-vol1.html
http://dx.doi.org/10.1145/73007.73010
http://dx.doi.org/10.1145/195058.195410
http://eccc.hpi-web.de/report/1994/002/
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1
http://dx.doi.org/10.1145/1250790.1250855
http://eccc.hpi-web.de/report/2007/047
http://dx.doi.org/10.1145/1374376.1374399
http://dx.doi.org/10.1016/0022-0000(84)90070-9
http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

[21] VENKATESAN GURUSWAMI, CHRISTOPHER UMANS, AND SALIL P. VADHAN: Unbalanced ex-
panders and randomness extractors from Parvaresh–Vardy codes. J. ACM, 56(4), 2009. Preliminary
version in CCC’07. [doi:10.1145/1538902.1538904] 826

[22] JOHAN HÅSTAD: Computational limitations of small-depth circuits. MIT Press, 1987.
[ACM:SERIES9056.27031] 814, 831, 832

[23] JOHAN HÅSTAD, RUSSELL IMPAGLIAZZO, LEONID A. LEVIN, AND MICHAEL LUBY: A pseu-
dorandom generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.
Preliminary versions in STOC’89 and STOC’90. [doi:10.1137/S0097539793244708] 810

[24] RUSSELL IMPAGLIAZZO: Hard-core distributions for somewhat hard problems. In Proc. 36th
FOCS, pp. 538–545. IEEE Comp. Soc. Press, 1995. [doi:10.1109/SFCS.1995.492584] 827

[25] RUSSELL IMPAGLIAZZO, NOAM NISAN, AND AVI WIGDERSON: Pseudorandomness for network
algorithms. In Proc. 26th STOC, pp. 356–364. ACM Press, 1994. [doi:10.1145/195058.195190]
810, 811, 812, 813, 824, 825

[26] YUVAL ISHAI AND EYAL KUSHILEVITZ: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In Proc. 41st FOCS, pp. 294–304. IEEE Comp.
Soc. Press, 2000. [doi:10.1109/SFCS.2000.892118] 814, 829, 833

[27] YUVAL ISHAI AND EYAL KUSHILEVITZ: Perfect constant-round secure computation via perfect
randomizing polynomials. In Proc. 29th Internat. Colloq. on Automata, Languages and Program-
ming (ICALP’02), pp. 244–256. Springer, 2002. [doi:10.1007/3-540-45465-9_22] 814, 829, 830,
833

[28] ALEXEI KITAEV, ALEXANDER SHEN, AND MIKHAIL VYALYI: Classical and Quantum Computa-
tion. Amer. Math. Soc., 2002. [ACM:863284] 816

[29] MICHAL KOUCKÝ, PRAJAKTA NIMBHORKAR, AND PAVEL PUDLÁK: Pseudorandom generators
for group products: extended abstract. In Proc. 43rd STOC, pp. 263–272. ACM Press, 2011.
[doi:10.1145/1993636.1993672] 813, 824

[30] CHI-JEN LU, SHI-CHUN TSAI, AND HSIN-LUNG WU: Complexity of hard-core set proofs.
Comput. Complexity, 20(1):145–171, 2011. Preliminary version in ICALP’07. [doi:10.1007/s00037-
011-0003-7] 827

[31] NOAM NISAN: Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70, 1991.
[doi:10.1007/BF01375474] 810, 813, 819

[32] NOAM NISAN: Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. Preliminary version in STOC’90. [doi:10.1007/BF01305237] 810, 812

[33] NOAM NISAN AND AVI WIGDERSON: Hardness vs randomness. J. Comput. System Sci., 49(2):149–
167, 1994. Preliminary version in FOCS’88. [doi:10.1016/S0022-0000(05)80043-1] 810, 811, 818,
819

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 840

http://dx.doi.org/10.1109/CCC.2007.38
http://dx.doi.org/10.1145/1538902.1538904
http://portal.acm.org/citation.cfm?id=SERIES9056.27031
http://dx.doi.org/10.1145/73007.73009
http://dx.doi.org/10.1145/100216.100270
http://dx.doi.org/10.1137/S0097539793244708
http://dx.doi.org/10.1109/SFCS.1995.492584
http://dx.doi.org/10.1145/195058.195190
http://dx.doi.org/10.1109/SFCS.2000.892118
http://dx.doi.org/10.1007/3-540-45465-9_22
http://portal.acm.org/citation.cfm?id=863284
http://dx.doi.org/10.1145/1993636.1993672
http://dx.doi.org/10.1007/978-3-540-73420-8_18
http://dx.doi.org/10.1007/s00037-011-0003-7
http://dx.doi.org/10.1007/s00037-011-0003-7
http://dx.doi.org/10.1007/BF01375474
http://dx.doi.org/10.1145/100216.100242
http://dx.doi.org/10.1007/BF01305237
http://dx.doi.org/10.1109/SFCS.1988.21916
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

[34] NOAM NISAN AND DAVID ZUCKERMAN: Randomness is linear in space. J. Comput. System Sci.,
52(1):43–52, 1996. Preliminary version in STOC’93. [doi:10.1006/jcss.1996.0004] 824

[35] RAN RAZ AND OMER REINGOLD: On recycling the randomness of states in space bounded
computation. In Proc. 31st STOC, pp. 159–168. ACM Press, 1999. [doi:10.1145/301250.301294]
824

[36] ALEXANDER RAZBOROV: Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mat. Zametki, 41(4):598–607, 1987. English translation in Mathematical
Notes of the Academy of Sci. of the USSR, 41(4):333-338, 1987. [doi:10.1007/BF01137685] 814

[37] RONEN SHALTIEL AND EMANUELE VIOLA: Hardness amplification proofs require majority.
SIAM J. Comput., 39(7):3122–3154, 2010. Preliminary version in STOC’08. See also at ECCC.
[doi:10.1137/080735096] 811, 827, 832, 835

[38] ROMAN SMOLENSKY: Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proc. 19th STOC, pp. 77–82. ACM Press, 1987. [doi:10.1145/28395.28404] 814,
830

[39] ROMAN SMOLENSKY: On representations by low-degree polynomials. In Proc. 34th FOCS, pp.
130–138. IEEE Comp. Soc. Press, 1993. [doi:10.1109/SFCS.1993.366874] 814, 830, 833

[40] MADHU SUDAN, LUCA TREVISAN, AND SALIL P. VADHAN: Pseudorandom generators without
the XOR lemma. J. Comput. System Sci., 62(2):236–266, 2001. Preliminary version in STOC’99.
See also at ECCC. [doi:10.1006/jcss.2000.1730] 826, 827

[41] EMANUELE VIOLA: Pseudorandom bits for constant-depth circuits with few arbitrary symmetric
gates. SIAM J. Comput., 36(5):1387–1403, 2007. Preliminary version in CCC’05. See also at ECCC.
[doi:10.1137/050640941] 830

[42] EMANUELE VIOLA: On approximate majority and probabilistic time. Comput. Complexity,
18(3):337–375, 2009. Preliminary version in CCC’07. [doi:10.1007/s00037-009-0267-3] 832

[43] EMANUELE VIOLA: On the power of small-depth computation. Foundations and Trends in
Theoretical Computer Science, 5(1):1–72, 2009. [doi:10.1561/0400000033] 833

[44] EMANUELE VIOLA: The complexity of distributions. SIAM J. Comput., 41(1):191–218, 2012.
Preliminary version in FOCS’10. [doi:10.1137/100814998] 830

[45] JOHN WATROUS: Succinct quantum proofs for properties of finite groups. In Proc. 41st FOCS, pp.
537–546. IEEE Comp. Soc. Press, 2000. [doi:10.1109/SFCS.2000.892141] 812

[46] RYAN WILLIAMS: Non-uniform ACC circuit lower bounds. In Proc. 26th IEEE Conf.
on Computational Complexity (CCC’11), pp. 115–125. IEEE Comp. Soc. Press, 2011.
[doi:10.1109/CCC.2011.36] 814

[47] RYAN WILLIAMS: Improving exhaustive search implies superpolynomial lower bounds. SIAM J.
Comput., 42(3):1218–1244, 2013. Preliminary version in STOC’10. [doi:10.1137/10080703X] 814

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 841

http://dx.doi.org/10.1145/167088.167162
http://dx.doi.org/10.1006/jcss.1996.0004
http://dx.doi.org/10.1145/301250.301294
http://dx.doi.org/10.1007/BF01137685
http://dx.doi.org/10.1145/1374376.1374461
http://eccc.hpi-web.de/report/2007/130/
http://dx.doi.org/10.1137/080735096
http://dx.doi.org/10.1145/28395.28404
http://dx.doi.org/10.1109/SFCS.1993.366874
http://dx.doi.org/10.1145/301250.301397
http://eccc.hpi-web.de/report/1998/074/
http://dx.doi.org/10.1006/jcss.2000.1730
http://dx.doi.org/10.1109/CCC.2005.25
http://eccc.hpi-web.de/report/2005/043/
http://dx.doi.org/10.1137/050640941
http://dx.doi.org/10.1109/CCC.2007.16
http://dx.doi.org/10.1007/s00037-009-0267-3
http://dx.doi.org/10.1561/0400000033
http://dx.doi.org/10.1109/FOCS.2010.27
http://dx.doi.org/10.1137/100814998
http://dx.doi.org/10.1109/SFCS.2000.892141
http://dx.doi.org/10.1109/CCC.2011.36
http://dx.doi.org/10.1145/1806689.1806723
http://dx.doi.org/10.1137/10080703X
http://dx.doi.org/10.4086/toc

BILL FEFFERMAN, RONEN SHALTIEL, CHRISTOPHER UMANS AND EMANUELE VIOLA

[48] ANDREW CHI-CHIH YAO: Theory and applications of trapdoor functions (extended abstract). In
Proc. 23rd FOCS, pp. 80–91. IEEE Comp. Soc. Press, 1982. [doi:10.1109/SFCS.1982.45] 810

[49] DAVID ZUCKERMAN: Randomness-optimal oblivious sampling. Random Structures & Al-
gorithms, 11(4):345–367, 1997. Preliminary version in STOC’96. [doi:10.1002/(SICI)1098-
2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z] 826

AUTHORS

Bill Fefferman
California Institute of Technology
wjf caltech edu
http://www.its.caltech.edu/~wjf/

Ronen Shaltiel
Professor
University of Haifa
ronen cs haifa ac il
http://www.cs.haifa.ac.il/~ronen

Christopher Umans
Professor
California Institute of Technology
umans caltech edu
http://users.cms.caltech.edu/~umans/

Emanuele Viola
Professor
Northeastern University
viola ccs neu edu
http://www.ccs.neu.edu/home/viola/

ABOUT THE AUTHORS

BILL FEFFERMAN is a Ph. D. student at Caltech, in the Department of Computer Science
and the Institute for Quantum Information and Matter, advised by Alexei Kitaev and
Chris Umans. His research focus is quantum complexity theory. This is his second article
in Theory of Computing.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 842

http://dx.doi.org/10.1109/SFCS.1982.45
http://dx.doi.org/10.1145/237814.237878
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z
http://www.its.caltech.edu/~wjf/
http://www.cs.haifa.ac.il/~ronen
http://users.cms.caltech.edu/~umans/
http://www.ccs.neu.edu/home/viola/
http://www.caltech.edu
www.cms.caltech.edu
www.iqim.caltech.edu
http://www.cms.caltech.edu/people/3083/profile
http://users.cms.caltech.edu/~umans/
http://dx.doi.org/10.4086/toc

ON BEATING THE HYBRID ARGUMENT

RONEN SHALTIEL graduated from the Hebrew University in 2001; his advisor was Avi
Wigderson. His thesis focused on pseudorandom generators and extractors which remain
his main focus until today. He spent time at the Institute for Advanced Study and did a
postdoc at the Weizmann Institute with Oded Goldreich and Moni Naor. He is reluctant
to provide personal details on an academic platform.

CHRISTOPHER UMANS graduated from U.C. Berkeley in 2000; his advisor was Christos
Papadimitriou. After a postdoc in the Theory Group at Microsoft Research, he joined
Caltech where he is now a professor of Computer Science. He is interested in deran-
domization, explicit constructions, algebraic complexity and algorithms, and hardness of
approximation. Much of his time outside work is spent with his young children, Kira
and Daniel.

EMANUELE VIOLA has been at Northeastern University, Boston, for five years. The picture
that appears on the website was taken by his sister Alessandra in 2012 at a trattoria in
Garbatella, a quaint neighborhood of Rome where Emanuele has spent countless hours
wandering.

THEORY OF COMPUTING, Volume 9 (26), 2013, pp. 809–843 843

http://cs.huji.ac.il
http://www.math.ias.edu/avi/
http://www.math.ias.edu/avi/
http://www.math.ias.edu
http://www.wisdom.weizmann.ac.il
http://www.wisdom.weizmann.ac.il/~oded/
http://www.wisdom.weizmann.ac.il/~naor/
http://www.eecs.berkeley.edu
http://http://www.cs.berkeley.edu/~christos/
http://http://www.cs.berkeley.edu/~christos/
http://research.microsoft.com/en-us/
http://www.caltech.edu/
http://dx.doi.org/10.4086/toc.2013.v009a0XX
http://alessandraviola.wordpress.com/
http://dx.doi.org/10.4086/toc

	Introduction
	The hybrid argument
	Two consequences of beating the hybrid argument
	An oracle relative to which BQP is not in the PH
	Pseudorandom generators for branching programs of small width

	New pseudorandom generators by beating the hybrid argument
	The role of resamplability
	Organization of this paper

	Toward an oracle relative to which BQP is not in the PH
	Preliminaries
	The quantum algorithm
	Unitary matrix with large, nearly-disjoint row supports
	The Nisan–Wigderson generator
	The paired-lines construction
	A local decomposition

	Putting it all together
	Distributional vs. standard oracles

	Toward pseudorandom generators with short seed for small space
	The Impagliazzo–Nisan–Wigderson pseudorandom generator
	Shooting for an unpredictable distribution

	Beating the hybrid argument
	Breaking the repeated sampling generator
	Using resamplability
	Generators based on parity
	A generator based on majority
	Generators based on L-hardness
	On a possible alternative way to get generators for AC0[p]
	Resamplability and worst-case to average-case reductions

	A unitary matrix in which all rows participate
	References

