
THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470
www.theoryofcomputing.org

SPECIAL ISSUE: APPROX-RANDOM 2012

Optimal Hitting Sets for
Combinatorial Shapes∗

Aditya Bhaskara Devendra Desai Srikanth Srinivasan†

Received November 5, 2012; Revised April 16, 2013; Published May 25, 2013

Abstract: We consider the problem of constructing explicit Hitting Sets for combinatorial
shapes, a class of statistical tests first studied by Gopalan, Meka, Reingold, and Zuckerman
(STOC 2011). These generalize many well-studied classes of tests, including symmetric
functions and combinatorial rectangles. Generalizing results of Linial, Luby, Saks, and Zuck-
erman (Combinatorica 1997) and Rabani and Shpilka (SICOMP 2010), we construct explicit
hitting sets for combinatorial shapes of size polynomial in the alphabet size, dimension,
and the inverse of the error parameter. This is optimal up to polynomial factors. The best
previous hitting sets came from the pseudorandom generator construction of Gopalan et al.,
and in particular had size that was quasipolynomial in the inverse of the error parameter.

Our construction builds on natural variants of the constructions of Linial et al. and Rabani
and Shpilka. In the process, we construct fractional perfect hash families and hitting sets for
combinatorial rectangles with stronger guarantees. These might be of independent interest.

ACM Classification: F.1.2, F.1.3

AMS Classification: 68Q10, 68Q15, 68R10, 68W20

Key words and phrases: derandomization, expanders, explicit construction, hitting sets, perfect hashing

∗An earlier version of this paper appeared in the Proceedings of the 16th International Workshop on Randomization and
Computation (RANDOM 2012), pp. 423-434, Springer 2012. The present version contains complete proofs.

†This work was done when the author was a postdoctoral researcher at DIMACS, Rutgers University.

© 2013 Aditya Bhaskara, Devendra Desai, and Srikanth Srinivasan
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2013.v009a013

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.1007/978-3-642-32512-0_36
http://dx.doi.org/10.1007/978-3-642-32512-0_36
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2013.v009a013

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

1 Introduction

Randomness is a tool of great importance in computer science and combinatorics. The probabilistic
method is highly effective both in the design of simple and efficient algorithms and in demonstrating
the existence of combinatorial objects with interesting properties. But the use of randomness also
comes with some disadvantages. In the setting of algorithms, introducing randomness adds to the
resource requirements of the algorithm, since truly random bits are hard to come by. For combinatorial
constructions, explicit versions of these objects often turn out to have more structure, which yields
advantages beyond the mere fact of their existence (e. g., we know of explicit error-correcting codes that
can be efficiently encoded and decoded, but we do not know of an analogue for random linear codes [7]).
Thus, it makes sense to ask exactly how powerful probabilistic algorithms and arguments are. Can they be
“derandomized,” i. e., replaced by deterministic algorithms/arguments of comparable efficiency?1 There is
a long line of research that has addressed this question in various forms [22, 13, 21, 26, 19].

An important line of research in this area is the question of derandomizing randomized space-
bounded algorithms. In 1979, Aleliunas et al. [1] demonstrated the power of these algorithms by showing
that undirected s-t connectivity can be solved by randomized algorithms in just O(logn) space. In
order to show that any randomized LOGSPACE computation could be derandomized within the same
space requirements, researchers considered the problem of constructing an efficient ε-pseudorandom
generator (ε-PRG) that would stretch a short random seed to a long pseudorandom string which would
be indistinguishable (up to error ε) from strings chosen from the uniform distribution to any LOGSPACE
algorithm.2 In particular, an ε-PRG (for small constant ε > 0) with seed length O(logn) would allow
efficient deterministic simulations of LOGSPACE randomized algorithms since a deterministic algorithm
could run over all possible random seeds.

A breakthrough work of Nisan [21] took a massive step towards this goal by giving an explicit
ε-PRG for ε = 1/poly(n) that stretches O(log2 n) truly random bits to an n-bit pseudorandom string for
LOGSPACE computations. In the two decades since, however, Nisan’s result has not been improved
upon at this level of generality. However, many interesting sub-cases of this class of functions have been
considered as avenues for progress [23, 15, 17, 16, 14].

In this work, we consider a very natural class of functions known as combinatorial shapes. A Boolean
function f is an (m,n)-combinatorial shape if it takes n inputs x1, . . . ,xn ∈ [m] and computes a symmetric
function of Boolean bits yi that depend on the membership of the inputs xi in sets Ai ⊆ [m], called
accepting sets, associated with f . (A function of Boolean bits y1, . . . ,yn is symmetric if and only if the
output depends only on the sum of the input bits.) In particular, ANDs, ORs, modular sums and majorities
of subsets of the input alphabet all belong to this class. Until recently, Nisan’s result gave the best known
seed length for any explicit ε-PRG for this class, even when ε was a constant. In 2011, however, Gopalan
et al. [11] gave an explicit ε-PRG for this class with seed length O(log(mn)+ log2(1/ε)). This seed
length is optimal as a function of m and n but suboptimal as a function of ε , and for the very interesting
case of ε = 1/nO(1), this result does not improve upon Nisan’s work.

Is the setting of small error important? We think the answer is yes, for many reasons. The first deals

1A “deterministic argument” for the existence of a combinatorial object is one that yields an efficient deterministic algorithm
for its construction.

2As a function of its random bits, the LOGSPACE algorithm is read-once: it scans its input once from left to right.

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 442

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

with the class of combinatorial shapes: many tests from this class accept a random input only with inverse
polynomial probability (e. g., the alphabet is {0,1} and the test accepts iff the Hamming weight of its n
input bits is n/2); for such tests, the guarantee that a 1/no(1)-PRG gives us is unsatisfactory. Secondly,
while designing PRGs for some class of statistical tests with (say) constant error, it often is the case
that one needs PRGs with much smaller error—e. g., one natural way of constructing almost-logn wise
independent spaces uses PRGs that fool parity tests [20] to within inverse polynomial error. Thirdly,
the reason to improve the dependence on the error is simply because we know that such PRGs exist.
Indeed, a randomly chosen function that expands O(logn) bits to an n-bit string is, w.h.p., an ε-PRG
for ε = 1/poly(n). Derandomizing this existence proof is a basic challenge in understanding how to
eliminate randomness from existence proofs. The tools we gain in solving this problem might help us in
solving others of a similar flavor.

Our result Constructing optimal PRGs is usually a hard problem, but there is a well-studied weakening
that we consider in this paper: constructing small ε-hitting sets (ε-HS). An ε-HS for a class of functions
has the property that any function from that class that accepts at least an ε fraction of uniformly random
strings accepts at least one of the strings in the hitting set. This is clearly a weaker guarantee than what an
ε-PRG gives us. Nevertheless, in many cases, this problem turns out to be very interesting and non-trivial.
In particular, a polynomial sized and LOGSPACE computable ε-HS for the class of space-bounded
computations would solve the long-standing open question of whether RL = L.

Our main result is an explicit ε-HS of size poly(mn/ε) for the class of combinatorial shapes, which
is optimal, to within polynomial factors, for all errors. Here, explicit means that it can be constructed by a
deterministic algorithm in time poly(mn/ε) and space O(logm+ logn+ log(1/ε)).

Theorem 1.1 (Main Result (informal)). For any m,n ∈N,ε > 0, there is an explicit ε-HS for the class of
combinatorial shapes of size poly(mn/ε).

Related work As far as we know, ours is the first work to specifically study the problem of constructing
hitting sets for combinatorial shapes. However, there has been a substantial amount of research into
both PRGs and hitting sets for many interesting subclasses of combinatorial shapes, and also some
generalizations.

Naor and Naor [20] constructed ε-PRGs for parity tests of bits (alphabet size 2) with a seed length
of O(logn+ log(1/ε)) that is optimal up to a constant factor [4]; these results were extended by Lovett,
Reingold, Trevisan, and Vadhan [16] and Meka and Zuckerman [18] to modular sums (with coefficients)
and separately by Watson [27] to parity sets over a larger alphabet, though with suboptimal seed length.

Combinatorial rectangles, another subclass of combinatorial shapes, have also been the subject
of much attention. A series of works [8, 6, 17] have constructed ε-PRGs for this class of functions:
the best such PRG, due to Lu [17], has seed length O(logn+ log3/2(1/ε)). Linial, Luby, Saks, and
Zuckerman [15] constructed optimal hitting sets for this class of tests. We build on many ideas from this
work.

We also mention two more recent results that are very pertinent to our work. The first has to do with
linear threshold functions which are weighted generalizations of threshold symmetric functions of input
bits. For this class, Rabani and Shpilka [24] construct an explicit ε-HS of optimal size poly(n/ε). They

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 443

http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

use a bucketing and expander walk construction to build their hitting set. Our construction uses similar
ideas.

The final result that we use is the PRG for combinatorial shapes by Gopalan et al. [11] that was
mentioned in the introduction. This work directly motivates our results and moreover, we use their PRG
as a black-box within our construction.

2 Preliminaries

Definition 2.1 (Combinatorial shapes, rectangles, and thresholds). A function f : [m]n→ {0,1} is an
(m,n)-combinatorial shape if there exist sets A1, . . . ,An ⊆ [m] and a symmetric function h : {0,1}n→
{0,1} such that f (x1, . . . ,xn) = h(1A1(x1), . . . ,1An(xn)).3 If h is the AND function, we call f an (m,n)-
combinatorial rectangle. If h is an unweighted threshold function, i. e., h accepts iff ∑i 1Ai(xi) ≥ θ

for some θ ∈ N, then f is said to be an (m,n)-combinatorial threshold. We denote by CShape(m,n),
CRect(m,n), and CThr(m,n) the class of (m,n)-combinatorial shapes, rectangles, and thresholds respec-
tively.

Notation In many arguments, we will work with a fixed collection of accepting sets A1, . . . ,An ⊆ [m]
that will be clear from the context. In such a scenario, for i ∈ [n], we let Xi = 1Ai(xi) and denote by X
the corresponding membership vector, i. e., the bits (X1, . . . ,Xn). For i ∈ [n], let pi = |Ai|/m, qi = 1− pi

and wi = piqi. Define the weight of a shape f as w(f) = ∑i wi. Also let µ(f) := ∑i pi. For θ ∈ N, let
Tθ : {0,1}n→{0,1} be the symmetric function that accepts iff the sum of its inputs is at least θ .

Definition 2.2 (Pseudorandom generators and hitting sets). Let F ⊆ {0,1}D denote a Boolean function
family for some input domain D. A function G : {0,1}s→ D is an ε-pseudorandom generator (ε-PRG)
with seed length s for a class of functions F if for all f ∈ F,∣∣∣∣ Pr

x∈u{0,1}s
[f (G(x)) = 1]− Pr

y∈uD
[f (y) = 1]

∣∣∣∣≤ ε .

An ε-hitting set (ε-HS) for F is a multi-set H containing only elements from D s.t. for any f ∈ F, if
Prx∈uD[f (x) = 1]≥ ε , then ∃x ∈ H such that f (x) = 1.

Remark 2.3. Whenever we say that there exist explicit families of combinatorial objects of some kind,
we mean that the object can be constructed by a deterministic algorithm in time polynomial and space
logarithmic in the description of the object. It will be clear from the formal descriptions of the hitting sets
that they can be constructed this efficiently.

We will use the following known results in our constructions.

Theorem 2.4 (ε-PRGs for CShape(m,n) [11]). For every ε > 0, there exists an explicit ε-PRG G
m,n,ε
GMRZ :

{0,1}s→ [m]n for CShape(m,n) with seed length s = O(log(mn)+ log2(1/ε)).

Theorem 2.5 (ε-HS for CRect(m,n) [15]). For every ε > 0, there exists an explicit ε-hitting set Sm,n,ε
LLSZ

for CRect(m,n) of size poly(m(logn)/ε).

31A is the indicator function of the set A.

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 444

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

We will also need a stronger version of Theorem 2.5 for special cases of combinatorial rectangles.
Informally, the strengthening says that if the acceptance probability of a “nice” rectangle is > p for some
reasonably large p, then a close to p fraction of the strings in the hitting set are accepting. Formally, the
following is proved later in the paper.

Theorem 2.6 (Stronger HS for CRect(m,n)). For all constants c≥ 1, m = nc, and ρ ≤ c logn, there is
an explicit set Sn,c,ρ

rect of size nOc(1) such that for any R ∈ CRect(m,n) which satisfies the properties:

1. R is defined by Ai, and the rejecting probabilities qi := (1−|Ai|/m) which satisfy ∑i qi ≤ ρ ,

2. Prx∼[m]n [R(x) = 1]≥ p (≥ 1/nc)

we have
Pr

x∼Sn,c,ρ
rect

[R(x) = 1]≥ p
2Oc(ρ)

.

Recall that a distribution µ over [m]n is k-wise independent for k∈N if for any S⊆ [n] such that |S| ≤ k,
the marginal µ|S is uniform over [m]|S|. Also, G : {0,1}s→ [m]n is a k-wise independent probability space
over [m]n if for uniformly randomly chosen z ∈ {0,1}s, the distribution of G(z) is k-wise independent.

Fact 2.7 (Explicit k-wise independent spaces, [2]). For any k,m,n ∈ N, there is an explicit k-wise
independent probability space G

m,n
k-wise : {0,1}s→ [m]n with s = O(k log(mn)).

We will also use the following result of Even et al. [8].

Theorem 2.8. Fix any m,n,k ∈N. Then, if f ∈ CRect(m,n) and µ is any k-wise independent distribution
over [m]n, then we have ∣∣∣∣ Pr

x∈[m]n
[f (x) = 1]− Pr

x∼µ
[f (x) = 1]

∣∣∣∣≤ 1
2Ω(k)

.

Expanders Recall that a degree-D multigraph G = (V,E) on N vertices is an (N,D,λ)-expander if the
second largest (in absolute value) eigenvalue of its normalized adjacency matrix is at most λ . We need
the expander graph to be regular in the weighted sense, i. e., the uniform distribution should be the graph’s
stationary distribution. We will use explicit expanders as a basic building block. We refer the reader to
the excellent survey of Hoory, Linial, and Wigderson [12] for various related results.

Fact 2.9 (Explicit expanders [12]). Given any λ > 0 and N ∈ N, there is an explicit (N,D,λ)-expander
where D = (1/λ)O(1).

Expanders have found numerous applications in derandomization. A central theme in these appli-
cations is to analyze random walks on a sequence of expander graphs. Let G1, . . . ,G` be a sequence of
(possibly different) graphs on the same vertex set V . Assume Gi (i ∈ [`]) is an (N,Di,λi)-expander. Fix
any u ∈V and y1, . . . ,y` ∈ N such that yi ∈ [Di] for each i ∈ [`]. Note that (u,y1, . . . ,y`) naturally defines
a “walk” (v1, . . . ,v`) ∈V ` as follows: v1 is the y1th neighbor of u in G1 and for each i > 1, vi is the yith
neighbor of vi−1 in Gi. We denote by W(G1, . . . ,G`) the set of all tuples (u,y1, . . . ,y`) as defined above.
Moreover, given w = (u,y1, . . . ,y`) ∈W(G1, . . . ,G`), we define vi(w) to be the vertex vi defined above
(we will simply use vi if the walk w is clear from the context).

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 445

http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

We need a variant of a result due to Alon, Feige, Wigderson, and Zuckerman [3]. The lemma as it is
stated below is slightly more general than the one given in [3] but it can be obtained by using essentially
the same proof and setting the parameters appropriately.

Lemma 2.10. Let G1, . . . ,G` be a sequence of graphs defined on the same vertex set V of size N. Assume
that Gi is an (N,Di,λi)-expander. Let V1, . . . ,V` ⊆V such that |Vi| ≥ piN > 0 for each i ∈ [`]. Let p0 = 1.
Then, as long as for each i ∈ [`], λi ≤ (pi pi−1)/8,

Pr
w∈W(G1,...,G`)

[∀i ∈ [`],vi(w) ∈Vi]≥ (0.75)` ∏
i∈[`]

pi . (2.1)

Actually, the way we have defined our walk, we do not need the graph G1. It is there in the statement
just to make the notation simpler. In our applications, it is convenient to use the following corollary.

Corollary 2.11. Let V be a set of N elements, and let 0 < pi < 1 for 1≤ i≤ ` be given. There exists an
explicit set of walks W, each of length `, such that for any subsets V1,V2, . . . ,V` of V , with |Vi| ≥ piN,
there exists a walk w = w1w2 . . .w` ∈W such that wi ∈ Vi for all i. Furthermore, there exist such W

satisfying |W| ≤ poly(N,∏`
i=1(1/pi)).

This follows from Lemma 2.10 by picking λi smaller than pi pi−1/8 for each i. By Fact 2.9, known
explicit constructions of expanders require choosing degrees Di = 1/λ

O(1)
i . The number of walks of

length ` is N ·∏`
i=1 Di, which gives the bound on W above.

Hashing Hashing plays a vital role in all our constructions. Thus, we need explicit hash families which
have several “good” properties. First, we state a lemma obtained by slightly extending part of a lemma
due to Rabani and Shpilka [24], which itself builds on the work of Schmidt and Siegel [25] and Fredman,
Komlós, and Szemerédi [10]. The proof appears later in the paper.

Lemma 2.12 (Perfect hash families). For any n, t ∈ N, there is an explicit family of hash functions
H

n,t
perf ⊆ [t][n] of size 2O(t)poly(n) such that for any S⊆ [n] with |S|= t, we have

Pr
h∈Hn,t

perf

[h is 1-1 on S]≥ 1
2O(t)

.

The families of functions thus constructed are called perfect hash families. We also need a “fractional”
version of the above lemma, whose proof is similar to that of the perfect hashing lemma above and is also
presented later in the paper.

Lemma 2.13 (Fractional perfect hash families). For any n, t ∈ N such that t ≤ n, there is an explicit
family of hash functions Hn,t

frac ⊆ [t][n] of size 2O(t)nO(1) such that for any z ∈ [0,1]n with ∑ j∈[n] z j ≥ 10t,
we have

Pr
h∈Hn,t

frac

[
∀i ∈ [t], ∑

j∈h−1(i)

z j ∈ [0.01M,10M]

]
≥ 1

2O(t)
,

where M = (∑ j∈[n] z j)/t.

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 446

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

3 Overview

We first show a lower bound on the size of hitting sets for combinatorial shapes. This lower bound implies
that the poly(mn/ε) sized ε-HS we construct for the class CShape(m,n) is optimal up to polynomial
factors.

Lemma 3.1. For any ε < 1/3, any ε-hitting set for CShape(m,n) must have size Ω(max{m,n,1/ε}).

Proof. It is already known from the result of Linial et al. [15, Proposition 4] that any ε-hitting set for
even the subclass CRect(m,n) of CShape(m,n) must have size at least Ω(max{m,1/ε}). Thus, we only
need to show a lower bound of Ω(n) for the size of any ε-hitting set for CShape(m,n) and that will prove
the lemma. This we do by essentially showing a lower bound for the case of constructing hitting sets for
parity tests over alphabet size 2 and then reducing this problem to the case of larger alphabets.

We need the following, which follows from the fact any set of less than n homogeneous linear
equations over F2 have a non-zero solution.

Fact 3.2. Given any T ⊆ {0,1}n such that |T| < n, there is a non-empty set I ⊆ [n] such that for each
b ∈ T we have

⊕
i∈I bi = 0.

Now fix any ε-hitting set S for CShape(m,n). We fix some A ⊆ [m] such that |A| = bm/2c. Now,
for each non-empty I ⊆ [n] we define the statistical test FI : [m]n→ {0,1} as follows: FI(x1, . . . ,xn) :=⊕

i∈I 1A(xi). Note that for any I, FI ∈ CShape(m,n) since we can write FI(x) as f (1B1(x1), . . . ,1Bn(xn))
where Bi = A for i ∈ I and /0 otherwise and f : {0,1}n→{0,1} is the parity of its n input bits, which is
of course a symmetric function.

It is easy to check that for any non-empty I ⊆ [n], the function FI accepts a random input with
probability at least bm/2c/m ≥ 1/3. Hence, for each non-empty I ⊆ [n], we have an x ∈ S such that
FI(x) = 1. Equivalently, if we define T := {(1A(x1), . . . ,1A(xn)) | x ∈ S} ⊆ {0,1}n, then for every non-
empty I ⊆ [n], there is some b ∈ T such that

⊕
i∈I bi = 1. But by Fact 3.2, this implies that |T| ≥ n. Since

|T| ≤ |S|, we have |S| ≥ n as well, which completes the proof.

We now make a standard simplifying observation that we can throughout assume that m and 1/ε are
nO(1). Thus, we only need to construct hitting sets of size nO(1) in this case.

Lemma 3.3. Assume that for some c ≥ 1, and m ≤ nc, there is an explicit 1/nc-HS for CShape(m,n)
of size nOc(1). Then, for any m,n,∈ N and ε > 0, there is an explicit ε-HS for CShape(m,n) of size
poly(mn/ε).

Proof. Fix c≥ 1 so that the assumptions of the lemma hold. Note that when m > nc, we can increase
the number of coordinates to n′ = m. Now, an ε-HS for CShape(m,n′) is also an ε-HS for CShape(m,n),
because we can ignore the final n′−n coordinates and this will not affect the hitting set property. Similarly,
when ε < 1/nc, we can again increase the number of coordinates to n′ that satisfies ε ≥ 1/(n′)c and the
same argument follows. In each case, by assumption we have an ε-HS of size (n′)Oc(1) = poly(mn/ε)
and thus, the lemma follows.

From now on, we will assume m,1/ε = nO(1). Next, we prove an important lemma which shows how
to obtain hitting sets for CShape(m,n) starting with hitting sets for CThr(m,n). This reduction crucially

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 447

http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

uses the fact that combinatorial shapes consist of only symmetric tests—it fails to hold, for instance, for
natural “weighted” generalizations of combinatorial shapes. Hitting sets for combinatorial thresholds
turn out to be easier to construct by appealing to the recent results of Gopalan et al. [11].

Lemma 3.4. Suppose that for every ε > 0 there exists an explicit ε-HS for CThr(m,n) of size F(m,n,1/ε).
Then there exists an explicit ε-HS for CShape(m,n) of size (n+1) ·F2(m,n,(n+1)/ε).

Proof. Suppose we can construct hitting sets for CThr(m,n) and parameter ε ′ of size F(m,n,1/ε ′), for
all ε ′ > 0. Now consider some f ∈ CShape(m,n), defined using sets A1, . . . ,An and symmetric function
h. Since h is symmetric, it depends only on the number of 1’s in its input. In particular, there is a
W ⊆ [n]∪{0} such that for a ∈ {0,1}n we have h(a) = 1 iff |a| ∈W . Now if Prx[f (x) = 1] ≥ ε , there
must exist a w ∈W such that

Pr
x
[|{i ∈ [n] | 1Ai(xi) = 1}|= w]≥ ε

|W |
≥ ε

n+1
.

Now consider the function f+w ∈ CThr(m,n) defined by the same accepting sets A1, . . . ,An and threshold
function Tw (so f+w accepts iff at least w of its inputs xi satisfy xi ∈ Ai), and the function f−w ∈ CThr(m,n)
defined by the complement accepting sets A1, . . . ,An and threshold function Tn−w (so f−w accepts iff at
most w of its inputs xi satisfy xi ∈ Ai). We have that both f+w and f−w have accepting probability at least
ε/(n+1), and thus an ε/(n+1)-HS S for CThr(m,n) must have “accepting” elements y,z ∈ [m]n for f−w
and f+w respectively.

The key idea is now the following. Suppose we started with the string y and moved to string z by
flipping the coordinates one at a time, i. e., the sequence of strings would be:

(y1 y2 · · · yn),(z1 y2 · · · yn),(z1 z2 · · · yn), . . . ,(z1 z2 · · · zn) .

In this sequence the number of “accepted” indices (i. e., i for which 1Ai(xi) = 1) changes by at most one
in each “step.” To start with, since y was accepting for f−w , the number of accepting indices was at most
w, and in the end, the number is at least w (since z is accepting for f+w), and hence one of the strings must
have precisely w accepting indices, and this string would be accepting for f !

Thus, we can construct an ε-HS for CShape(m,n) as follows. Let S denote an explicit (ε/(n+1))-HS
for CThr(m,n) of size F(m,n,(n+1)/ε). For any y,z∈ S, let Iy,z be the set of n+1 “interpolated” strings
obtained above. Define S′ =

⋃
y,z∈S Iy,z. As we have argued above, S′ is an ε-HS for CShape(m,n). It is

easy to check that S′ has the size claimed.

Outline of the constructions In what follows, we focus on constructing hitting sets for CThr(m,n).
We will describe the construction of two families of hitting sets: the first is for the “high weight” case –
w(f) := ∑i wi ≥C logn for some large constant C, and the second for the case w(f)<C logn. The final
hitting set is a union of the ones for the two cases.

The high weight case (Section 4.1) is conceptually simpler, and illustrates the important tools. A main
tool in both cases is a “fractional” version of the perfect hashing lemma, which, though a consequence of
folklore techniques, does not seem to be known in this generality (Lemma 2.13).

The proof of the low weight case is technically more involved, so we first present the solution in the
special case when all the sets Ai are “small,” i. e., we have pi ≤ 1/2 for all i (Section 4.2). This case

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 448

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

illustrates the main techniques we use for the general low weight case. The special case uses the perfect
hashing lemma (which appears, for instance in derandomization of “color coding”—a trick introduced
in [5], which our proof in fact bears a resemblance to).

The general case (Section 4.3), in which pi are arbitrary, is more technical: here we need to do a
“two level” hashing. The top level is by dividing into buckets, and in each bucket we get the desired
“advantage” using a generalization of hitting sets for combinatorial rectangles (which itself uses hashing:
Theorem 2.6).

Finally we describe the main tools used in our construction. The stronger hitting set construction for
special combinatorial rectangles is discussed in Section 5, the perfect and fractional perfect hash family
constructions are discussed in Section 6, and the proof of the expander walk lemma appears in Section 7.
We end with some interesting open problems.

4 Hitting sets for combinatorial thresholds

As described above, we first consider the high weight case (i. e., w(f)≥C logn for some large absolute
constant C). Next, we consider the low weight case, with an additional restriction that each of the
accepting probabilities pi ≤ 1/2. This serves as a good starting point to explain the general low weight
case, which we get to in Section 4.3. In each section, we outline our construction and then analyze it
for a generic combinatorial threshold f : [m]n→{0,1} (subject to weight constraints) defined using sets
A1, . . . ,An ⊆ [m]. The theorem we finally prove in the section is as follows.

Theorem 4.1. For any constant c ≥ 1, the following holds. Suppose m,1/ε ≤ nc. For the class of
functions CThr(m,n), there exists an explicit ε-hitting set of size nOc(1).

The main result of the paper, which we state formally below, follows directly from the statements of
Theorem 4.1 and Lemmas 3.3 and 3.4.

Theorem 4.2. For any m,n ∈ N and ε > 0, there is an explicit ε-hitting set for CShape(m,n) of size
poly(mn/ε).

4.1 High weight case

In this section we will prove the following:

Theorem 4.3. For any c≥ 1, there is a C > 0 such that for m,1/ε ≤ nc, there is an explicit ε-HS of size
nOc(1) for the class of functions in CThr(m,n) of weight at least C logn.

Fix a combinatorial threshold f where the associated accepting sets are A1, . . . ,An and the symmetric
function is Tθ , for θ such that the probability of acceptance for independent, uniformly random inputs
is at least 1/nc. For convenience, define µ := µ(f), and W := w(f). We have W ≥C logn for a large
constant C (it needs to be large compared to c, as seen below).

First, recall that we denote by X the membership vector for an input x ∈ [m]n, i. e., X denotes the bits
(X1, . . . ,Xn) = (1A1(x1), . . . ,1An(xn)). Since Prx[Tθ (X) = 1]> ε (≥ 1/nc), by Chernoff bounds we have
that θ ≤ µ +2

√
cW logn.

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 449

http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

Outline The main idea is the following: we first divide the indices [n] into logn buckets using a hash
function h (from a fractional perfect hash family, see Lemma 2.13). This is to ensure that the wi get
distributed somewhat uniformly. Second, we aim to obtain an advantage of roughly 2

√
cW/ logn in each

of the buckets (advantage is with respect to the mean in each bucket): i. e., for each i ∈ [logn], we choose
the indices x j (j ∈ h−1(i)) such that we get

∑
j∈h−1(i)

X j ≥ ∑
j∈h−1(i)

p j +2

√
cW

logn

with reasonable probability. Third, we ensure that the above happens for all buckets simultaneously (with
probability > 0) so that the advantages add up, giving a total advantage of 2

√
cW logn over the mean,

which is what we intended to obtain. In the second step (i. e., in each bucket), we can prove that the
desired advantage occurs with constant probability for uniformly randomly and independently chosen
x j ∈ [m] and then derandomize this choice by the result of Gopalan et al. [11] (Theorem 2.4). Finally, in
the third step, we cannot afford to use independent random bits in different buckets (this would result in a
seed length of Θ(log2 n))—thus we need to use expander walks to save on randomness.

Construction and analysis Let us now describe the three steps in detail. We note that these steps
parallel the results of Rabani and Shpilka [24].

The first step is straightforward: we pick a hash function from a perfect fractional hash family H
n,logn
frac .

From Lemma 2.13, we obtain

Claim 4.4. For every set of weights w, there exists an h ∈H
n,logn
frac such that for all 1≤ i≤ logn, we have

W/(100logn)≤ ∑ j∈h−1(i) w j ≤ (100W)/ logn.

The rest of the construction is done starting with each h ∈H
n,logn
frac . Thus for analysis, suppose that

we are working with an h satisfying the inequality from the above claim. For the second step, we first
prove that for independent random xi ∈ [m], we have a constant probability of getting an advantage of
2
√

cW/ logn over the mean in each bucket.

Lemma 4.5. Let S be the sum of k independent random variables Xi, with Pr[Xi = 1] = pi, let c′ ≥ 0
be a constant, and let ∑i pi(1− pi) = σ2, for some σ satisfying σ ≥ 20ec′2 . Define µ := ∑i pi. Then
Pr[S > µ + c′σ]≥ α , and Pr[S < µ− c′σ]≥ α , for some constant α depending on c′.

The proof is straightforward, but it is instructive to note that in general, a random variable (in this
case, S) need not deviate “much more” (in this case, a c′ factor more) than its standard deviation: we have
to use the fact that S is the sum of independent random variables. This is done by an application of the
Berry-Esséen theorem [9].

Proof. We recall the standard Berry-Esséen theorem [9].

Fact 4.6 (Berry-Esseen). Let Y1, . . . ,Yn be independent random variables satisfying

∀i, E[Yi] = 0 , ∑E[Y 2
i] = σ

2 and ∀i, |Yi| ≤ βσ .

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 450

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

Then the following error bound holds for any t ∈ R,∣∣Pr
[
∑Yi > t

]
−Pr

[
N(0,σ2)> t

]∣∣≤ β .

We can now apply this to Yi := Xi− pi (so as to make E[Yi] = 0). Then E[Y 2
i] = pi(1− pi)

2 +(1−
pi)p2

i = pi(1− pi), thus the total variance is still ≥ σ2. Since |Yi| ≤ 1 for all i ∈ [n], this means we have
the condition |Yi| ≤ βσ for β ≤ e−c′2/20. Now for the Gaussian, a computation shows that we have
Pr[N(0,σ2)> c′σ]> e−c′2/10. Thus from our bound on β , we get Pr[∑Yi > c′σ]> e−c′2/20, which we
pick to be α . This proves the lemma.

Assume now that we choose x1, . . . ,xn ∈ [m] independently and uniformly at random. For each
bucket i ∈ [logn] defined by the hash function h, we let µi = ∑ j∈h−1(i) p j and Wi = ∑ j∈h−1(i) p j(1− p j) =

∑ j∈h−1(i) w j. Recall that Claim 4.4 assures us that for i ∈ [logn], Wi ≥W/(100logn)≥C/100. Let X (i)

denote ∑ j∈h−1(i) X j. Then, for any i ∈ [logn], we have

Pr

[
X (i) > µi +2

√
cW

logn

]
≥ Pr

[
X (i) > µi +

√
400c ·

√
Wi

]
.

We can now apply Lemma 4.5 (with σ2 being Wi): if C is a large enough constant so that
√

Wi ≥√
C/10≥ 20e400c, then for uniformly randomly chosen x1, . . . ,xn ∈ [m] and each bucket i ∈ [logn], we

have
Pr
[
X (i) ≥ µi +2

√
cW/ logn

]
≥ α ,

where α > 0 is some fixed constant depending on c. When this event occurs for every bucket, we obtain
∑ j∈[n] X j ≥ µ +2

√
cW logn≥ µ +θ . We now show how to sample such an x ∈ [m]n with a small number

of random bits.
Let G : {0,1}s → [m]n denote the PRG of Gopalan et al. [11] from Theorem 2.4 with parameters

m,n, and error α/2 i. e., Gm,n,α/2
GMRZ . Note that since α is a constant depending on c, we have s = Oc(logn).

Moreover, since we know that the success probability with independent random x j (j ∈ h−1(i)) for
obtaining the desired advantage is at least α , we have for any i ∈ [logn] and y(i) randomly chosen from
{0,1}s,

Pr
x(i)=G(y(i))

[
X (i) > µi +2

√
cW

logn

]
≥ α/2 .

This only requires seed length Oc(logn) per bucket.
Thus we are left with the third step: here for each bucket i ∈ [logn], we would ideally like to have

(independent) seeds which generate the corresponding x(i) (and each of these PRGs has a seed length of
Oc(logn)). Since we cannot afford Oc(log2 n) total seed length, we instead do the following: consider
the PRG G defined above. As mentioned above, since α = Ωc(1), the seed length needed here is only
Oc(logn). Let S be the range of G (viewed as a multi-set of strings: S ⊆ [m]n). From the above, we
have that for the ith bucket, the probability x∼ S exceeds the threshold on indices in bucket i is at least
α/2. Now there are logn buckets, and in each bucket, the probability of “success” is at least α/2. We
can thus appeal to the “expander walk” lemma of Alon et al. [3] (see preliminaries, Lemma 2.10 and
Corollary 2.11).

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 451

http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

This means the following: we consider an explicitly constructed expander on a graph with vertices
being the elements of S, and the degree being a constant depending on α . We then perform a random walk
of length logn (the number of buckets). Let s1,s2, . . . ,slogn be the strings (from S) we see in the walk. We
form a new string in [m]n by picking values for indices in bucket i, from the string si. By Corollary 2.11,
with non-zero probability, this will succeed for all 1≤ i≤ logn, and this gives the desired advantage.

The seed length for generating the walk is O(log |S|)+Oc(1) · logn = Oc(logn). Combining (or in
some sense, composing) this with the hashing earlier completes the construction.

4.2 Low weight case with small accepting sets

We now prove Theorem 4.1 for the case of thresholds f satisfying w(f) = O(logn). Also we will make
the simplifying assumption (which we will get rid of in the next subsection) that the accepting sets of f ,
namely A1, . . . ,An ⊆ [m], are of small size.

Theorem 4.7. Fix any c≥ 1. For any m = nc, there exists an explicit 1/nc-HS S
n,c
low,1 ⊆ [m]n of size nOc(1)

for functions f ∈ CThr(m,n) such that w(f)≤ c logn and pi ≤ 1/2 for each i ∈ [n].

Let us fix a function f (x) = Tθ (X) (recall that X denotes the membership vector for x) that accepts
with good probability: Prx[Tθ (X) = 1] ≥ ε . Since w(f) ≤ c logn and wi = pi(1− pi) ≥ pi/2 for each
i ∈ [n], it follows that µ ≤ 2c logn. Thus by a Chernoff bound and the fact that ε = 1/nc, we have that
θ ≤ c′ logn for some c′ = Oc(1).

Outline Suppose we fix a 1 ≤ θ ≤ c′ logn. The idea is to use a hash function h from a perfect hash
family (Lemma 2.12) mapping [n] 7→ [θ]. The aim is now to obtain a contribution of 1 to the sum ∑ j X j

from each bucket. By using a pairwise independent space in each bucket Bi := h−1(i), we get the desired
contribution with probability µi = ∑ j∈Bi p j. Thus in order to succeed overall, we require ∏i µi to be
large (at least 1/poly(n)). By a reason similar to color coding (see [5]), this condition will turn out to
be true when we bucket using a perfect hash family. As before, even when this is true, we cannot use
independent hashes in each bucket, we take a hash function over [n], and do an expander walk. The final
twist is that in the expander walk, we cannot use a constant degree expander, because we do not have a
constant probability of success in each bucket—all we know is that the product of the probabilities is at
least 1/nc′′ . Thus we use a sequence of expanders on the same vertex set with the product of the degrees
being a specific value. We observe that there are only polynomially many possible sequences of degrees,
and this will complete the proof. We note that the last trick was implicitly used in the work of [15].

Construction Let us formally describe a hitting set construction for a fixed θ . (The final set Sn,c
low,1 will

be a union of these for all 1≤ θ ≤ c′ logn along with the hitting set of [15].)
Step 1: Let Hn,θ

perf = {h : [n]→ [θ]} be a perfect hash family as in Lemma 2.12. The size of the hash

family is 2O(θ)poly(n) = nOc′ (1) = nOc(1). For each hash function h ∈H
n,θ
perf divide [n] into θ buckets

B1, . . . ,Bθ (so Bi = h−1(i)).
Step 2: We will plug in a pairwise independent space in each bucket. Let Gm,n

2-wise : {0,1}s→ [m]n

denote the generator of a pairwise independent space. Note that the seed length for any bucket is
s = O(logn).

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 452

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

Step 3: The seed for the first bucket is chosen uniformly at random and seeds for the subsequent
buckets are chosen by a walk on expanders with varying degrees. For each i ∈ [θ] we choose every
possible η ′i such that 1/η ′i is a power of 2 and ∏i η ′i ≥ 1/nOc(1), where the constant implicit in the
Oc(1) will become clear in the analysis of the construction below. There are at most poly(n) such
choices for all η ′i ’s in total.4 We then take a (2s,Di,λi)-expander Hi on vertices {0,1}s with degree
Di = poly(1/(η ′i η

′
i−1)) (let η ′0 = 1) and λi ≤ η ′i η

′
i−1/8 (by Fact 2.9, such explicit expanders exist). Now

for any u ∈ {0,1}s, {yi ∈ [Di]}θ
i=1, let (u,y1, . . . ,yθ) ∈W(H1, . . . ,Hθ) be a θ -step walk. For all starting

seeds z0 ∈ {0,1}s and all possible yi ∈ [di], we construct the input x ∈ [m]n such that for all i ∈ [θ], we
have x|Bi = G

m,n
2-wise(vi(z0,y1, . . . ,yθ))|Bi .

Size. We have |Sn,c
low,1|= c′ logn ·nOc(1) ·∏i Di, where the c′ logn factor is due to the choice of θ , the

nOc(1) factor is due to the size of the perfect hash family, the number of choices of (η ′1, . . . ,η
′
θ
), and the

choice of the first seed, and an additional nO(1) ·∏i Di factor is the number of expander walks. Simplifying,
|Sn,c

low,1|= nOc(1)∏Di = nOc(1) ∏i(η
′
i)
−O(1) ≤ nOc(1), where the last inequality is due to the choice of η ′i ’s.

Analysis We follow the outline. First, by a union bound we know that

Pr
x∼[m]n

[Tθ (X) = 1]≤ ∑
|S|=θ

∏
i∈S

pi and hence ∑
|S|=θ

∏
i∈S

pi ≥ ε .

Second, if we hash the indices [n] into θ buckets at random and consider one S with |S|= θ , the probability
that the indices in S are “uniformly spread” (one into each bucket) is 1/2O(θ). By Lemma 2.12, this
property is also true if we pick h from the explicit perfect hash family H

n,θ
perf.

Formally, given an h ∈Hn,θ
perf, define αh = ∏i∈[θ] ∑ j∈Bi p j. Over a uniform choice of h from the family

H
n,θ
perf, we can conclude that

E
h
[αh]≥ ∑

|S|=θ

∏
i∈S

pi ·Pr
h
[h is 1-1 on S]≥ ε

2O(θ)
≥ 1

nOc(1)
.

Thus there must exist an h that satisfies αh ≥ 1/nOc(1).
We fix such an h. For a bucket Bi, define ηi = Prx∈Gm,n

2-wise
[∑ j∈Bi X j ≥ 1]. Now for a moment, let us

analyze the construction assuming independently seeded pairwise independent spaces in each bucket.
Then the success probability, namely the probability that every bucket Bi has a non-zero ∑ j∈Bi X j is equal
to ∏i ηi. The following claim gives a lower bound on this probability.

Claim 4.8. For the function h satisfying αh ≥ 1/nOc(1), we have ∏i∈[θ] ηi ≥ 1/nOc(1).

Proof. For a bucket Bi, define µi =∑ j∈Bi p j. Further, call a bucket Bi as being good if µi≤ 1/2, otherwise
call the bucket bad. For the bad buckets,

∏
Bi bad

µi ≤ ∏
Bi bad

eµi = exp

(
∑

Bi bad
µi

)
≤ eµ ≤ nOc(1) . (4.1)

4This is equivalent to writing F := Oc(1) · logn as a sum of θ non-negative integers, which can be done in at most(F+θ

θ

)
≤ poly(n) ways.

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 453

http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

From the choice of h and the definition of αh we have

1
nOc(1)

≤ ∏
i∈[θ]

µi = ∏
Bi bad

µi ∏
Bi good

µi ≤ nOc(1) ∏
Bi good

µi⇒ ∏
Bi good

µi ≥
1

nOc(1)
, (4.2)

where we have used equation (4.1) for the second inequality.
Now let us analyze the ηi’s. For a good bucket Bi, by inclusion-exclusion,

ηi = Pr
x

[
∑
j∈Bi

X j ≥ 1

]
≥ ∑

j∈Bi

p j− ∑
j,k∈Bi: j<k

p j pk ≥ µi−
µ2

i

2
≥ µi

2
. (4.3)

For a bad bucket, µi > 1/2. But since all pi’s are ≤ 1/2, it is not hard to see that there must exist a
non empty subset B′i ⊂ Bi satisfying 1/4≤ µ ′i := ∑ j∈B′i p j ≤ 1/2. We now can use equation (4.3) on the
good bucket B′i to get the bound on the bad bucket Bi as follows:

ηi ≥ Pr
x

[
∑
j∈B′i

X j ≥ 1

]
≥ µ ′i

2
≥ 1

8
. (4.4)

So finally,

∏
i∈[θ]

ηi ≥ ∏
Bi bad

1
8 ∏

Bi good

µi

2
≥ 1

2O(θ)

1
nOc(1)

=
1

nOc(1)
,

where we have used (4.3) and (4.4) for the first inequality and (4.2) for the second inequality.

If now the seeds for Gm,n
2-wise in each bucket are chosen according to the expander walk with the degrees

of the expander graphs suitably related to the probability vector (η1, . . . ,ηθ), then by Lemma 2.10 the
success probability becomes at least (1/2O(θ))∏i ηi ≥ 1/nOc(1), using Claim 4.8 for the final inequality.

However, we do not know this probability vector and we cannot try all possible such vectors, since
there are too many of them. Instead, we get a closest guess (η ′1, . . . ,η

′
θ
) such that for all i ∈ [θ], 1/η ′i

is a power of 2 and ηi ≥ η ′i ≥ ηi/2. Again, by Lemma 2.10 the success probability becomes at least
(1/2O(θ))∏i η ′i ≥ (1/2O(θ))2

∏i ηi ≥ 1/nOc(1), using Claim 4.8 for the final inequality. Note that this also
tells us that it is sufficient to guess η ′i such that ∏i(1/η ′i)≤ nOc(1).

4.3 General low weight case

The general case (where the pi’s are arbitrary) is more technical: here we need to do a “two level” hashing.
The top level is by dividing into buckets, and in each bucket we get the desired “advantage” using a
generalization of hitting sets for combinatorial rectangles (which itself uses hashing) from [15]. The
theorem we prove for this case can be stated as follows.

Theorem 4.9. Fix any c≥ 1. For any m≤ nc, there exists an explicit 1/nc-HS S
n,c
low ⊆ [m]n of size nOc(1)

for functions f ∈ CThr(m,n) such that w(f)≤ c logn.

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 454

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

Construction We describe S
n,c
low by demonstrating how to sample a random element x of this set. The

number of possible random choices bounds |Sn,c
low|. We define the sampling process in terms of certain

constants ci that depend on c in a way that will become clear later in the proof. Assuming this, it will be
clear that |Sn,c

low|= nOc(1).
Step 1: Choose at random t ∈ {0, . . . , 12c logn}. If t = 0, then we simply output a random element x

of Sm,n,1/nc1

LLSZ for some constant c1. The number of choices for t is Oc(logn) and if t = 0, the number of
choices for x is nOc(1). The number of choices for non-zero t are bounded subsequently.

Step 2: Choose h ∈H
n,t
perf uniformly at random. The number of choices for h is nOc(1) ·2O(t) = nOc(1).

Step 3: Choose at random non-negative integers ρ1, . . . ,ρt and a1, . . . ,at such that ∑i ρi ≤ c2 logn
and ∑i ai ≤ c3 logn. For any constants c2 and c3, the number of choices for ρ1, . . . ,ρt and a1, . . . ,at is
nOc(1).

Step 4: Choose a set V such that |V | = nOc(1) = N and identify V with S
n,c4,ρi
rect for some constant

c4 ≥ 1 and each i ∈ [t] in some arbitrary way (we assume w.l.o.g. that the sets Sn,c4,ρi
rect (i ∈ [t]) all have the

same size). Fix a sequence of expander graphs (G1, . . . ,Gt) with vertex set V where Gi is an (N,Di,λi)-
expander with λi ≤ 1/(10 · 2ai · 2ai−1) and Di = 2O(ai+ai−1), where a0 = 0 (this is possible by Fact 2.9).
Choose w ∈W(G1, . . . ,Gt) uniformly at random. For each i ∈ [t], the vertex vi(w) ∈ V gives us some
x(i) ∈ S

n,c4,ρi
rect . Finally, we set x ∈ [m]n so that x|h−1(i) = x(i)|h−1(i). The total number of choices in this step

is bounded by |W(G1, . . . ,Gt)| ≤ N ·∏i Di ≤ nOc(1) ·2O(∑i ai) = nOc(1).
Thus, the number of random choices (and hence |Sn,c

low|) is at most nOc(1).

Analysis We will now prove Theorem 4.9. The analysis once again follows the outline of Section 4.2.
For brevity, we will denote S

n,c
low by S. Fix any A1, . . . ,An ⊆ [m] and a threshold test f ∈ CThr(m,n)

such that f (x) := Tθ (X) for some θ ∈ N (where X denotes the membership vector (X1, . . . ,Xn) based on
the Ai’s). We assume that f has low weight and good acceptance probability on uniformly random input:
that is, w(f)≤ c logn and Prx∈[m]n [f (x) = 1]≥ 1/nc. For each i ∈ [n], let pi denote |Ai|/m and qi denote
1− pi. We call Ai small if pi ≤ 1/2 and large otherwise. Let U = {i |Ai is small} and V = [n]\U . Note
that w(f) = ∑i piqi ≥ ∑i∈U pi/2+∑i∈V qi/2.

Also, given x ∈ [m]n, let Y (x) = ∑i∈U Xi and Z(x) = ∑i∈V (1−Xi) = ∑i∈V 1Ai
(xi). We have ∑i Xi =

Y (x)+ (|V |−Z(x)) for any x. We would like to show that Prx∈S [f (x) = 1] > 0. Instead we show the
following stronger statement:

Pr
x∈S

[
Z(x) = 0∧Y (x)≥ θ −|V |

]
> 0 . (4.5)

To do this, we first need the following simple claim.

Claim 4.10. Prx∈[m]n
[
Z(x) = 0∧Y (x)≥ θ −|V |

]
≥ 1/nc1 , for c1 = O(c).

Proof. Clearly, we have

Pr
x∈[m]n

[
Z(x) = 0∧Y (x)≥ θ −|V |

]
= Pr

x∈[m]n

[
Z(x) = 0

]
· Pr

x∈[m]n
[Y (x)≥ θ −|V |] .

We lower bound each term separately by 1/nO(c).

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 455

http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

To bound the first term, note that Prx∈[m]n
[
Z(x) = 0

]
= ∏i∈V (1−qi) = exp{−O(∑i∈V qi)} where the

last inequality follows from the fact that qi < 1/2 for each i ∈V and (1−x)≥ e−2x for x ∈ [0,1/2]. Now,
since each qi < 1/2, we have qi ≤ 2wi for each i ∈V and hence, ∑i∈V qi = O(w(f)) = O(c logn). The
lower bound on the first term follows.

To bound the second term, we note that Prx∈[m]n [Y (x)≥ θ ′] can only decrease as θ ′ increases. Thus,
we have

Pr
x∈[m]n

[Y (x)≥ θ −|V |] = ∑
i≥0

Pr
x∈[m]n

[Y (x)≥ θ −|V |] · Pr
x∈[m]n

[
Z(x) = i

]
≥∑

i≥0
Pr

x∈[m]n

[
Y (x)≥ (θ −|V |+ i)∧Z(x) = i

]
= Pr

x∈[m]n

[
∑

i∈[n]
Xi ≥ θ

]
≥ 1/nc .

To show that Prx∈S
[
Z(x) = 0∧Y (x)≥ θ −|V |

]
> 0, we define a sequence of “good” events whose

conjunction occurs with positive probability and which together imply that Z(x) = 0 and Y (x)≥ θ −|V |.
Event E1: t = max{θ −|V |,0}. To argue that E1 occurs with positive probability, we need to show

that θ−|V | ≤ 12c logn. To see this, note that we are given that f (x) = Tθ (X) accepts a uniformly random
x with probability at least 1/nc, and by Chernoff bounds, we must have θ −Ex[∑i Xi]≤ 10c logn. Since
Ex[∑i Xi]≤∑i∈U pi+∑i∈V pi ≤ 2w(f)+ |V |, we see that θ−|V | ≤ 12c logn. We condition on this choice
of t.

Note that by Claim 4.10, we have Prx∈[m]n
[
Z(x) = 0∧Y (x)≥ t

]
≥ 1/nc1 . We will show that this

event occurs with positive probability even if x is drawn from S as described above, and this will prove
(4.5). If t = 0, then the condition that Y (x)≥ t is trivial and hence the above event reduces to Z(x) = 0,
which is just a combinatorial rectangle and hence, there is an x ∈ S

m,n,1/nc1

LLSZ with f (x) = 1 and we are
done. Therefore, for the rest of the proof we assume that t ≥ 1.

Event E2: Given h ∈ H
n,t
perf, define αh to be the quantity ∏i∈[t]

(
∑ j∈h−1(i)∩U p j

)
. Note that by

Lemma 2.12, for large enough constant c′1 depending on c, we have

E
h∈Hn,t

perf

[αh]≥ ∑
T⊆U :|T |=t

∏
j∈T

p j Pr
h
[h is 1-1 on T]

≥ 1
2O(t) ∑

T⊆U :|T |=t
∏
j∈T

p j

≥ 1
2O(t)

Pr
x
[Y (x)≥ t] (by union bound)

≥ 1
nc′1

.

Event E2 is simply that αh ≥ 1/nc′1 . By averaging, there is such a choice of h. Fix such a choice.
Event E3: We say that this event occurs if for each i ∈ [t], we have

ρi =

⌈
∑

j∈h−1(i)∩U

p j + ∑
k∈h−1(i)∩V

qk

⌉
+1 .

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 456

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

To see that this event can occur, we only need to verify that for this choice of ρi, we have ∑i ρi ≤
c2 logn for a suitable constant c2 depending on c. But this straight away follows from the fact that
∑ j∈U p j +∑k∈V qk ≤ 2w(f)≤ 2c logn. Fix this choice of ρi (i ∈ [t]).

To show that there is an x ∈ S such that Z(x) = 0 and Y (x) ≥ t, our aim is to show that there is an
x ∈ S with Zi(x) := ∑ j∈h−1(i)∩V (1−X j) = 0 and Yi(x) := ∑ j∈h−1(i)∩U X j ≥ 1 for each i ∈ [t]. To show that
this occurs, we first need the following claim.

Claim 4.11. Fix i∈ [t]. Let p′i = Prx∈Sn,c4,ρi
rect

[
Zi(x) = 0∧Yi(x)≥ 1

]
. Then, p′i ≥ (∑ j∈h−1(i)∩U p j)/2c′4ρi , for

large enough constants c4 and c′4 depending on c.

Proof. We assume that p j > 0 for every j ∈ h−1(i)∩U (the other j do not contribute anything to the
right hand side of the inequality above).

The claim follows from the fact that the event Zi(x) = 0∧Yi(x)≥ 1 is implied by any of the pairwise
disjoint rectangles R j(x) = X j∧

∧
j 6=k∈h−1(i)∩U(1−Xk)∧

∧
`∈h−1(i)∩V X` for j ∈ h−1(i)∩U . Thus, we have

p′i = Pr
x∈Sn,c4 ,ρi

rect

[
Zi(x) = 0∧Yi(x)≥ 1

]
≥ ∑

j∈h−1(i)∩U

Pr
x∈Sn,c4 ,ρi

rect

[R j(x) = 1] . (4.6)

Note that the sum of the rejecting probabilities of the individual sets in the combinatorial rectangle R j

is upper bounded by ∑k∈h−1(i)∩U\{ j} pk +∑`∈h−1(i)∩V q`+q j, which is in turn is at most ∑k∈h−1(i)∩U pk +

∑`∈h−1(i)∩V q`+ 1 ≤ ρi by the fact that event E3 holds. Moreover, ρi ≤ ∑s∈[t] ρs ≤ c2 logn. Below, we
choose c4 ≥ c2 and so we have ρi ≤ c4 logn.

Note also that for each j ∈ h−1(i)∩U , we have

Pj := Pr
x∈[m]n

[R j(x) = 1]

≥ p j ∏
k∈h−1(i)∩U

(1− pk) ∏
`∈h−1(i)∩V

(1−q`)

≥ p j exp{−2(∑
k

pk +∑
`

q`)} ≥ p j exp{−2ρi} ,

where the second inequality follows from the fact that (1− x)≥ e−2x for any x ∈ [0,1/2]. In particular,
for large enough constant c4 > c2, we see that Pj ≥ 1/m ·1/nO(c) ≥ 1/nc4 .

Thus, by Theorem 2.6, we have for each j, Prx∈Sn,c4 ,ρi
rect

[R j(x) = 1]≥ Pj/2Oc(ρi); since Pj ≥ p j/2O(ρi),
we have

Pr
x∈Sn,c4 ,ρi

rect

[R j(x) = 1]≥ p j/2(Oc(1)+O(1))ρi ≥ p j/2c′4ρi

for a large enough constant c′4 depending on c. This bound, together with (4.6), proves the claim.

The above claim immediately shows that if we plug in independent x(i) chosen at random from S
n,c4,ρi
rect

in the indices in h−1(i), then the probability that we pick an x such that Z(x) = 0 and Y (x)≥ t is at least

∏
i

p′i ≥ 1/2Oc(∑i∈[t] ρi) ∏
i∈[t]

(
∑

j∈h−1(i)∩U

p j

)
= 1/2Oc(logn) ·αh ≥ 1/nOc(1) . (4.7)

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 457

http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

However, the x(i) we actually choose are not independent but picked according to a random walk
w ∈W(G1, . . . ,Gt). But by Lemma 2.10, we see that for this event to occur with positive probability, it
suffices to have λi ≤ p′i−1 p′i/8 for each i ∈ [t] (let p′0 = 1). To satisfy this, it suffices to have 1/2ai ≤ p′i ≤
1/2ai−1 for each i. This is exactly the definition of the event E4.

Event E4: For each i ∈ [t], we have 1/2ai ≤ p′i ≤ 1/2ai−1. For this to occur with positive probability,
we only need to check that ∑i∈[t]dlog(1/p′i)e ≤ c3 logn for large enough constant c3. But from (4.7), we
have

∑
i
dlog(1/p′i)e ≤

(
∑

i
log(1/p′i)

)
+ t

≤ Oc(logn)+O(c logn)≤ c3 logn

for large enough constant c3 depending on c. This shows that E4 occurs with positive probability and
concludes the analysis.

Proof of Theorem 4.1 The theorem follows easily from Theorems 4.3 and 4.9. Fix constant c≥ 1 such
that m,1/ε ≤ nc. For C > 0 a constant depending on c, we obtain hitting sets for thresholds of weight
at least C logn from Theorem 4.3 and for thresholds of weight at most C logn from Theorem 4.9. Their
union is an ε-HS for all of CThr(m,n).

5 Stronger hitting sets for combinatorial rectangles

As mentioned in the introduction, [15] give ε-hitting set constructions for combinatorial rectangles, even
for ε = 1/poly(n). However in our applications, we require something slightly stronger—in particular,
we need a set S such that Prx∼S(x in the rectangle)≥ ε (roughly speaking). We however need to fool only
special kinds of rectangles, given by the two conditions in the following theorem.

Theorem 5.1 (Theorem 2.6 restated). For all constants c≥ 1, m = nc, and ρ ≤ c logn, there is an explicit
set Sn,c,ρ

rect of size nOc(1) such that for any R ∈ CRect(m,n) which satisfies the properties:

1. R is defined by Ai, and the rejecting probabilities qi satisfy ∑i qi ≤ ρ and

2. p := Prx∼[m]n [R(x) = 1]≥ 1/nc,

we have
Pr

x∼Sn,c,ρ
rect

[R(x) = 1]≥ p
2Oc(ρ)

.

To outline the construction, we keep in mind a rectangle R defined by sets Ai, and write pi = |Ai|/m,
qi = 1− pi. W.l.o.g., we assume that ρ ≥ 10. The outline of the construction is as follows:

1. We guess an integer r ≤ ρ/10 (supposed to be an estimate for ∑i qi/10).

2. Then we use a fractional hash family H
n,r
frac to map the indices into r buckets. This ensures that

each bucket has roughly a constant weight.

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 458

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

3. In each bucket, we show that taking O(1)-wise independent spaces (Fact 2.7) ensures a success
probability (i. e., the probability of being inside R) depending on the weight of the bucket.

4. We then combine the distributions for different buckets using expander walks (this step has to be
done with more care now, since the probabilities are different across buckets).

Steps (1) and (2) are simple: we try all choices of r, and the “right” one for the hashing in step (2)
to work is r = ∑i qi/10; the probability that we make this correct guess is at least 1/ρ � 1/2ρ . In this
case, by the fractional hashing lemma, we obtain a hash family H

n,r
frac, which has the property that for an h

drawn from it, we have

Pr

[
∑

j∈h−1(i)

q j ∈ [1/100,100] for all i

]
≥ 1

2Oc(r)
≥ 1

2Oc(ρ)
.

Step (3) is crucial, and we prove the following:

Claim 5.2. There is an absolute constant a ∈ N such that the following holds. Let A1, . . . ,Ak be the
accepting sets of a combinatorial rectangle R in CRect(m,k), and let q1, . . . ,qk be rejecting probabilities
as defined earlier, with ∑i qi≤C, for some constant C≥ 1. Let S be the support of an aC-wise independent
distribution on [m]k (in the sense of Fact 2.7). Then

Pr
x∈S

[R(x) = 1]≥ ∏i(1−qi)

2
.

Proof. We observe that if ∑i qi ≤C, then at most 2C of the qi are ≥ 1/2. Let B denote the set of such
indices. Now consider S, an aC-wise independent distribution over [m]k. Let us restrict to the vectors in
the distribution for which the coordinates corresponding to B are in the rectangle R. Because the family
is aC-wise independent, the number of such vectors is precisely a factor ∏i∈B(1−qi) of the support of S.

Now, even after fixing the values at the locations indexed by B, the chosen vectors still form a (a−2)C-
wise independent distribution. Thus by Theorem 2.8, we have that the distribution δ -approximates, i. e.,
maintains the probability of any event (in particular the event that we are in the rectangle R) to an additive
error of δ = 2−Ω((a−2)C) < (1/2)e−2∑i qi < (1/2)∏i 6∈B(1−qi) for large enough a. (In the last step, we
used the fact that if x < 1/2, then (1− x)> e−2x). Thus if we restrict to coordinates outside B, we have
that the probability that these indices are “accepting” for R is at least (1/2)∏i6∈B pi (because we have a
very good additive approximation).

Combining the two, we get that the overall accepting probability is (1/2)∏i(1−qi), finishing the
proof of the claim.

Let us now see how the claim fits into the argument. Let B1, . . . ,Br be the sets of indices of the
buckets obtained in Step (2). Claim 5.2 now implies that if we pick an aC-wise independent family on
all the n positions (call this S), the probability that we “succeed” on Bi is at least (1/2)∏ j∈Bi(1−q j).
For convenience, let us write Pi = (1/2)∏ j∈Bi(1−q j). We wish to use an expander walk argument as
before—however this time the probabilities Pi of success are different across the buckets.

The idea is to estimate Pi for each i, up to a sufficiently small error. Let us define L = dc logne. Note
that L ≥ log(1/p), since p≥ 1/nc (where p is as in the statement of Theorem 2.6). Now, we estimate

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 459

http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

log(1/Pi) by the smallest integer multiple of L′ := bL/rc ≥ 10 which is larger than it: call it αi ·L′. Since
∑i log(1/Pi) is at most L, we have ∑i αiL′ ≤ 2L, or ∑i αi ≤ 3r. Since the sum is over r indices, there are
at most 2O(r) choices for the αi we need to consider. Each choice of the αi’s gives an estimate for Pi

(which is also a lower bound on Pi). More formally, set ρi = e−αiL′ , so we have Pi ≥ ρi for all i.
Finally, let us construct graphs Gi (for 1≤ i≤ r) with the vertex set being S (the aC-wise independent

family), and Gi having a degree depending on ρi (we do this for each choice of the ρi’s). By the expander
walk lemma (Lemma 2.10), we obtain an overall probability of success of at least ∏i Pi/2O(r) for the
“right” choice of the ρi’s. Since our choice is right with probability at least 2−O(r), we obtain a success
probability in Steps (3) and (4) of at least ∏i Pi/2O(r) ≥ p/2O(r) ≥ p/2O(ρ). In combination with the
success probability of 1/2Oc(ρ) above for Steps (1) and (2), this gives us the claimed overall success
probability.

Finally, we note that the total seed length we have used in the process is Oc(logn+∑i log(1/ρi)),
which can be upper bounded by Oc(logn+L) = Oc(logn).

6 Perfect and fractional hash families

The first step in all of our constructions has been hashing into a smaller number of buckets. To this effect,
we need an explicit construction of hash families which have several “good” properties. We will first look
at the perfect hash lemma, which appears in a slightly different form in Rabani and Shpilka [24]. Most of
our proof follows along the lines of their proof, except for when we use expanders to derandomize the
seeds used for second level hashes. The proof is provided for completeness and also serves as a warm up
for the similar, but more involved construction of fractional perfect hash families later discussed.

Lemma 2.12 (restated). For any n, t ∈ N, there is an explicit family of hash functions Hn,t
perf ⊆ [t][n] of

size 2O(t)poly(n) such that for any S⊆ [n] with |S|= t, we have

Pr
h∈Hn,t

perf

[h is 1-1 on S]≥ 1
2O(t)

.

Proof. We begin with the formal construction of H
n,t
perf. To sample a random h ∈ H

n,t
perf, we do the

following:
Step 1 (Top-level hashing): We choose a pairwise independent hash function h1 : [n]→ [t] by choosing

a random seed to generator Gt,n
2-wise. By Fact 2.7, this requires O(logn+ log t) = O(logn) bits.

Step 2 (Guessing bucket sizes): We choose at random y1, . . . ,yt ∈ N so that ∑i yi ≤ 4t. It can be
checked that the number of possibilities for y1, . . . ,yt is only 2O(t).

Step 3 (Second-level hashing): For each i ∈ [t], we fix an explicit pairwise independent family of hash
functions mapping [n] to [yi] given by G

yi,n
2-wise. We assume w.l.o.g. that each such generator has some fixed

seed length s = O(logn) (if not, increase the seed length of each to the maximum seed length among
them). Let V = {0,1}s. Using Fact 2.9, fix a sequence (G1, . . . ,Gt) of t many (2s,D,λ)-expanders on set
V with D = O(1) and λ ≤ 1/100. Choosing w ∈W(G1, . . . ,Gt) uniformly at random, set h2,i : [n]→ [yi]
to be G

yi,n
2-wise(vi(w)). Define h2 : [n]→ [4t] as follows:

h2(j) =

(
∑

i<h1(j)
yi

)
+h2,h1(j)(j) . (6.1)

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 460

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

Given the random choices made in the previous steps, the function h2 is completely determined by
|W(G1, . . . ,G10t)|, which is 2O(t) ·poly(n).

Step 4 (Folding): We choose uniformly at random I′ ⊆ [4t] such that |I′|= t. We now fix an arbitrary
map f : [4t]→ [t] such that f is a bijection on I′ and define h(j) := f (h2(j)). The number of choices in
this step is the number of possibilities for I′ which is 2O(t).

Since the number of possibilities for the random choices made in the above four steps, is bounded by
2O(t)nO(1), we see that |Hn,t

perf| is at most 2O(t)nO(1).

y1

y2

yt

[4t]

[t]

...
h2 fold

[n]

Figure 1: The basic framework of the perfect hash family construction.

We now show that a random h ∈H
n,t
perf has the properties stated in the lemma. Assume h is sampled

as above. Fix S⊆ [n] such that |S|= t.
For i ∈ [t], define the random variable Xi = |h−1

1 (i)∩S| and let X = ∑i∈[t] X2
i . An easy computation

shows that Eh1 [X] ≤ 2t. Let E1 denote the event that X ≤ 4t. By Markov’s inequality, Prh1 [E1] ≥ 1/2.
We condition on a choice of h1 so that E1 occurs.

We now analyze the second step. We say that event E2 holds if for each i ∈ [t], yi = X2
i . We claim

that Pr [E2]≥ 1/2O(t). Since the number of random choices in Step 2 is only 2O(t), it suffices to argue that
∑i∈[t] X2

i ≤ 4t. But this follows since we have conditioned on E1. We now condition on random choices
in Step 2 so that E2 occurs as well.

For the third step, given i ∈ [t], we call the hash function h2,i collision-free if h2,i is 1-1 on the set
h−1

1 (i)∩ S. Since h2,i is chosen from a pairwise independent hash family, given any distinct j1, j2 ∈
h−1

1 (i)∩S, the probability that h2,i(j1) = h2,i(j2) is 1/yi = 1/X2
i . By a simple union bound, we can upper

bound the probability that h2,i is not collision-free as follows:

Pr
h2,i

[h2,i not collision-free] = Pr
h2,i

[
∃ j1 6= j2 ∈ h−1

1 (i)∩S : h2,i(j1) = h2,i(j2)
]

≤
(

Xi

2

)
· 1

X2
i
≤ 1

2
.

Let E3 denote the event that for each i ∈ [t], h2,i is collision-free. Since the seeds for the various hash

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 461

http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

functions have been chosen using a suitable expander walk, by Lemma 2.10, we see that

Pr [E3] = Pr
w∈W(G1,...,Gt)

[∀i ∈ [t] : h2,i collision-free]≥ 1/2O(t) .

We condition on a choice for the hash functions h2,1, . . . ,h2,t so that E3 also occurs. Note that given
h1 and h2,i for i ∈ [t], the hash function h2 : [n]→ [4t] is completely determined.

Moreover, conditioned on the events E1,E2, and E3, we claim that h2 is 1-1 on S. To see this, consider
any distinct j1, j2 ∈ S. If h1(j1) 6= h1(j2), then we have h2(j1) 6= h2(j2) straight away from (6.1). On the
other hand, if h1(j1) = h1(j2) = i, then from (6.1) we see that |h2(j1)−h2(j2)|= |h2,i(j1)−h2,i(j2)| 6= 0,
where the last inequality follows from the fact that E3 holds and hence each h2,i is collision-free. This
shows that h2 is 1-1 on S. Let I denote the set h2(S) which is a subset of [4t] of size exactly t.

Let E4 denote the event that I′ = I. The probability that E4 occurs is exactly
(4t

t

)−1
= 1/2O(t). When

E4 occurs as well, the function f maps I bijectively to [t] and hence the function h = f ◦ h2 maps S
bijectively to [t] as well, which is exactly what we want.

Thus the probability of sampling such a “good” h is at least Pr [E1∧E2∧E3∧E4] = 1/2O(t), which
proves the lemma.

The construction of the fractional perfect hash family is almost analogous to the construction of the
perfect hash family above, though the details are somewhat more involved, as we have to ensure that each
bucket in the hash has roughly equal weight.

Lemma 2.13 (restated). For any n, t ∈ N such that t ≤ n, there is an explicit family of hash functions
H

n,t
frac ⊆ [t][n] of size 2O(t)nO(1) such that for any z ∈ [0,1]n such that ∑ j∈[n] z j ≥ 10t, we have

Pr
h∈Hn,t

frac

[
∀i ∈ [t],0.01

∑ j∈[n] z j

t
≤ ∑

j∈h−1(i)

z j ≤ 10
∑ j∈[n] z j

t

]
≥ 1

2O(t)
.

Proof. For S⊆ [n], we define z(S) to be ∑ j∈S z j. By assumption, we have z([n])≥ 10t. Without loss of
generality, we assume that z([n]) = 10t (otherwise, we work with z̃ = (10t/z([n]))z which satisfies this
property; since we prove the lemma for z̃, it is true for z as well). We thus need to construct Hn,t

frac such
that

Pr
h∈Hn,t

frac

[
∀i ∈ [t],z(h−1(i)) ∈ [0.1,100]

]
≥ 1

2O(t)
.

We describe the formal construction by describing how to sample a random element h of Hn,t
frac. To

sample a random h ∈H
n,t
frac, we do the following:

Step 1 (Top-level hashing): We choose a pairwise independent hash function h1 : [n]→ [10t] by
choosing a random seed to generator Gt,n

2-wise. By Fact 2.7, this requires O(logn+ log t) = O(logn) bits.
Step 2 (Guessing bucket sizes): We choose at random a subset I′ ⊆ [10t] of size exactly t and

y1, . . . ,y10t ∈N so that ∑i yi ≤ 30t. It can be checked that the number of possibilities for I′ and y1, . . . ,y10t

is only 2O(t).
Step 3 (Second-level hashing): By Fact 2.7, for each i ∈ [10t], we have an explicit pairwise inde-

pendent family of hash functions mapping [n] to [yi] given by G
yi,n
2-wise. We assume w.l.o.g. that each

such generator has some fixed seed length s = O(logn) (if not, increase the seed length of each to the

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 462

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

maximum seed length among them). Let V = {0,1}s. Using Fact 2.9, fix a sequence (G1, . . . ,G10t) of
10t many (2s,D,λ)-expanders on set V with D = O(1) and λ ≤ 1/100. Choosing w ∈W(G1, . . . ,G10t)
uniformly at random, set h2,i : [n]→ [yi] to be G

yi,n
2-wise(vi(w)). Define h2 : [n]→ [30t] as follows:

h2(j) =

(
∑

i<h1(j),i6∈I′
yi

)
+h2,h1(j)(j) .

Given the random choices made in the previous steps, the function h2 is completely determined by
|W(G1, . . . ,G10t)|, which is 2O(t) ·nO(1).

Step 4 (Folding): This step is completely deterministic given the random choices made in the previous
steps. We fix an arbitrary map f : (I′×{0})∪ ([10t]×{1})→ [t] with the following properties: (a) f is
1-1 on I′×{0}, (b) f is 10-to-1 on [10t]×{1}. We now define h : [n]→ [t]. Define h(j) as

h(j) =

{
f (h1(j),0) if h1(j) ∈ I′,
f (h2(j),1) otherwise.

It is easy to check that |Hn,t
frac|, which is the number of possibilities for the random choices made in the

above steps, is bounded by 2O(t)nO(1), exactly as required.
We now show that a random h ∈H

n,t
frac has the properties stated in the lemma. Assume h is sampled

as above. We analyze the construction step-by-step. First, we recall the following easy consequence of
the Paley-Zygmund inequality:

Fact 6.1. For any non-negative random variable Z we have

Pr [Z ≥ 0.1 E[Z]]≥ 0.9
(E[Z])2

E[Z2]
.

Consider h1 sampled in the first step. Define, for each i ∈ [10t], the random variables Xi = z(h−1
1 (i))

and Yi = ∑ j1 6= j2:h1(j1)=h1(j2)=i z j1z j2 , and let X = ∑i∈[10t] X2
i and Y = ∑i∈[10t]Yi. An easy calculation shows

that X = ∑ j∈[n] z2
j +Y ≤ 10t +Y . Hence, Eh1 [X]≤ 10t +Eh1 [Y] and moreover

E
h1
[Y] = ∑

j1 6= j2

z j1z j2 Pr
h1
[h1(j1) = h1(j2)]≤

z([n])2

10t
= 10t .

Let E1 denote the event that Y ≤ 20t. By Markov’s inequality, this happens with probability at least 1/2.
We condition on any choice of h1 so that E1 occurs. Note that in this case, we have X ≤ 10t +Y ≤ 30t.

Let Z = Xi for a randomly chosen i ∈ [10t]. Clearly, we have Ei[Z] = (1/10t)∑i Xi = 1 and also
Ei[Z2] = (1/10t)∑i X2

i = (1/10t)X ≤ 3. Thus, Fact 6.1 implies that for random i ∈ [n], we have
Pri [Z ≥ 0.1] ≥ 0.3. Markov’s Inequality tells us that Pri [Z > 10] ≤ 0.1. Putting things together, we
see that if we set I = {i ∈ [10t] |Xi ∈ [0.1,10]}, then |I| ≥ 0.2× 10t = 2t. The elements of I will be
referred to as the medium-sized buckets.

We now analyze the second step. We say that event E2 holds if (a) I′ contains only medium-sized
buckets, and (b) for each i∈ [10t], yi = dYie. We claim that Pr [E2]≥ 1/2O(t). Since the number of random
choices in Step 2 is only 2O(t), it suffices to argue that there are more than t many medium-sized buckets

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 463

http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

and that ∑i∈[10t]dYie ≤ 30t. The former follows from the lower bound on |I′| above, and the latter from
the fact that ∑i∈[10t]dYie ≤ 10t +∑iYi ≤ 30t. We now condition on random choices in Step 2 so that both
E1 and E2 occur.

For the third step, given i 6∈ I′, we say that hash function h2,i is collision-free if for each k ∈ [yi], we
have z(Si,k)≤ 2 where Si,k = h−1

2,i (k)∩h−1
1 (i). The following simple claim shows that this condition is

implied by the condition that for each k, Yi,k := ∑ j1 6= j2∈Si,k
z j1z j2 ≤ 2.

Claim 6.2. For any α1, . . . ,αm ∈ [0,1], if ∑ j α j > 2, then ∑ j1 6= j2 α j1α j2 > 2.

Proof. Follows from the fact that ∑ j1 6= j2 α j1α j2 = (∑ j α j)
2−∑ j α2

j ≥ (∑ j α j)
2− (∑ j α j), where the last

inequality follows from the fact that α1, . . . ,αm ∈ [0,1].

For the sake of analysis, assume first that the hash functions h2,i (i ∈ [10t]) are chosen to be pairwise
independent and independent of each other. Now fix any i ∈ [10t] and k ∈ [yi]. Then, since h2,i is chosen
to be pairwise-independent, we have

E[Yi,k] = ∑
j1 6= j2:h1(j1)=h1(j2)=i

z j1z j2 Pr
h2,i

[h2,i(j1) = h2,i(j2) = k] = Yi/y2
i ≤ 1/yi .

In particular, by Markov’s inequality, Pr [Yi,k ≥ 2]≤ 1/2yi. Thus, by a union bound over k, we see that
the probability that a uniformly random pairwise independent hash function h2,i is collision-free is at least
1/2.

Now, let us consider the hash functions h2,i as defined in the above construction. Let E3 denote the
event that for each i 6∈ I′, h2,i is collision-free. Hence, by Lemma 2.10, we see that

Pr [E3] = Pr
w∈W(G1,...,G10t)

[
∀i ∈ [10t]\ I′ : h2,i collision-free

]
≥ 1/2O(t) .

Thus, we have established that Pr [E1∧E2∧E3]≥ 1/2O(t). We now see that when these events occur,
then the sampled h satisfies the properties we need. Fix such an h and consider i ∈ [t].

Since f is a bijection on I′×{0}, we see that there must be an i′ ∈ I′ such that f (i′,0) = i. Since i′ ∈ I′

and the event E2 occurs, it follows that i′ is a medium-sized bucket. Thus, z(h−1(i))≥ z(h−1
1 (i′))≥ 0.1.

Secondly, since E3 occurs, we have

z(h−1(i)) = z(h−1
1 (i′))+ ∑

(`,1)∈ f−1(i)

z(h−1
2 (`)\h−1

1 (I′))≤ 10+10 max
i∈[10t],k∈[yi]

z(Si,k)≤ 100 ,

where the final inequality follows because E3 holds. This shows that for each i, we have z(h−1(i)) ∈
[0.1,100] and hence h satisfies the required properties. This concludes the proof of the lemma.

7 Expander walks

In this section we prove Lemma 2.10. For convenience we restate it below.

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 464

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

Lemma 2.10 (restated). Let G1, . . . ,G` be a sequence of graphs defined on the same vertex set V of size
N. Assume that Gi is an (N,Di,λi)-expander. Let V1, . . . ,V` ⊆V such that |Vi| ≥ piN > 0 for each i ∈ [`].
Let p0 = 1. Then, as long as for each i ∈ [`], λi ≤ (pi pi−1)/8,

Pr
w∈W(G1,...,G`)

[∀i ∈ [`],vi(w) ∈Vi]≥ (0.75)` ∏
i∈[`]

pi . (7.1)

Without loss of generality, we can assume that each subset Vi (i ∈ [`]) has size exactly piN.
Let us consider an ` step random walk starting at a uniformly random starting vertex in V , in which

step i is taken in the graph Gi. The probability distribution after ` steps is now given by A`A`−1 . . .A11N ,
where 1N denotes the vector (1/N, . . . ,1/N), and Ai is the normalized adjacency matrix of the graph Gi.

Now, we are interested in the probability that a walk satisfies the property that its ith vertex is in set Vi

for each i. For `= 1, for example, this is precisely the L1 weight of the set V1, in the vector A11N . More
generally, suppose we define the operator IS to be one which takes a vector and returns the “restriction” to
S (and puts zero everywhere else), then the probability that the walk ends up in set S after one step is
‖IV1A11N‖1. In general, it is easy to see that the probability that the ith vertex in the walk is in Vi for all
1≤ i≤ t is precisely ‖IVt AtIVt−1At−1 . . . IV1A11N‖1. We will call the vector of interest u(t), for convenience,
and bound ‖u(t)‖1 inductively.

Intuitively, the idea will be to show that u(t) should be a vector with a ‘reasonable mass’, and is
distributed “roughly uniformly” on the set Vt . Formally, we will show the following inductive statement.
Define u(0) = 1N .

Lemma 7.1. For all 1≤ t ≤ `, we have the following two conditions:

‖u(t)‖1 ≥
3pt

4
‖u(t−1)‖1 , (7.2)

‖u(t)‖2 ≤
2√
ptN
‖u(t)‖1 . (7.3)

Note that the second equation informally says that the mass of u(t) is distributed roughly equally on a
set of size ptN. Lemma 2.10 now follows by induction using eq. (7.2) and the fact that ‖u(0)‖1 = 1.

The proof of Lemma 7.1 is also by induction, but we will need a bit of simple notation before we
start. Let us define u‖ and u⊥ to be the components of a vector u which are parallel and perpendicular
(respectively) to the vector 1N . Thus we have u = u‖+u⊥ for all u. The following lemma is easy to see.

Claim 7.2. For any N-dimensional vector x with all positive entries, we have ‖x‖‖1 = ‖x‖1. Furthermore,
x‖ is an N-dimensional vector with each entry ‖x‖1/N.

Proof. The “furthermore” part is by the definition of x‖, and the first part follows directly from it.

We can now prove Lemma 7.1. We will use the fact that Ai1N = 1N for each i, and that ‖Aiu‖2≤ λ‖u‖2
for u orthogonal to 1N .

Proof of Lemma 7.1. For t = 1, we have u(1) = IV1A11N = IV11N , and thus we have ‖u(1)‖1 = p1, and we
have ‖u(1)‖2 = p1/

√
p1N, and thus the claims are true for t = 1. Now suppose t ≥ 2, and that they are

true for t−1.

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 465

http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

For the first part, we observe that

‖u(t)‖1 = ‖IVt Atu(t−1)‖1 ≥ ‖IVt Atu
‖
(t−1)‖1−‖IVt Atu⊥(t−1)‖1 . (7.4)

The first term is equal to ‖IVt u
‖
(t−1)‖1 = pt‖u(t−1)‖1, because IVt preserves ptN indices, and each has a

contribution of ‖u(t−1)‖1/N, by Claim 7.2.
The second term can be upper bounded as

‖IVt Atu⊥(t−1)‖1 ≤
√

N‖IVt Atu⊥(t−1)‖2 ≤
√

N ·λt‖u(t−1)‖2 ≤
2λt
√

N√
pt−1N

‖u(t−1)‖1 ,

where we used the inductive hypothesis in the last step. From the condition λt ≤ pt pt−1/8, we have
that the term above is bounded above by pt‖u(t−1)‖1/4. Combining this with equation (7.4), the first
inequality follows.

The second inequality is proved similarly. Note that for this part we can even assume the first
inequality for t, i. e., ‖u(t)‖1 ≥ (3/4)pt‖u(t−1)‖1. We will call this (*). By the triangle inequality,

‖u(t)‖2 ≤ ‖IVt Atu
‖
(t−1)‖2 +‖IVt Atu⊥(t−1)‖2 . (7.5)

The first term is the L2 norm of a vector with support Vt , and each entry ‖u(t−1)‖1/N, from Claim 7.2 we
have that the first term is equal to

‖u(t−1)‖1

N
·
√

ptN ≤
4‖u(t)‖1

3
√

ptN
,

with the inequality following from (*). The second term can be bounded by

λt‖u(t−1)‖2 ≤
2λt√
pt−1N

‖u(t−1)‖1 ≤
√

pt pt−1

4
√

pt−1N
‖u(t−1)‖1 ≤

1
3
√

ptN
‖u(t)‖1 .

Here we first used the inductive hypothesis, and then our choice of λt , followed by (*). Plugging these
into equation (7.5), we obtain the second inequality.

This completes the inductive proof of the two inequalities.

8 Open problems

We have used a two-level hashing procedure to construct hitting sets for combinatorial thresholds of
low weight. It would be nice to obtain a simpler construction avoiding the use of an “inner” hitting set
construction.

An interesting direction is to extend our methods to weighted variants of combinatorial shapes:
functions which accept an input x iff ∑i αi1Ai(xi) = S where αi ∈ R≥0. The difficulty here is that having
hitting sets for this sum being ≥ S and ≤ S do not imply a hitting set for “= S.” The simplest open case
here is m = 2, all Ai being {1}, and αi integers in [1,10n], for example. It would also be interesting to
prove formally that such weighted versions can capture much stronger computational classes.

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 466

http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

Acknowledgements

The authors are very grateful to the anonymous referees for correcting various errors and deficiencies in
an earlier version of the paper and also simplifying some of the notation and proofs.

References

[1] ROMAS ALELIUNAS, RICHARD M. KARP, RICHARD J. LIPTON, LÁSZLÓ LOVÁSZ, AND

CHARLES RACKOFF: Random walks, universal traversal sequences, and the complexity
of maze problems. In Proc. 20th FOCS, pp. 218–223. IEEE Comp. Soc. Press, 1979.
[doi:10.1109/SFCS.1979.34] 442

[2] NOGA ALON, LÁSZLÓ BABAI, AND ALON ITAI: A fast and simple randomized parallel algorithm
for the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986. [doi:10.1016/0196-
6774(86)90019-2] 445

[3] NOGA ALON, URIEL FEIGE, AVI WIGDERSON, AND DAVID ZUCKERMAN: Derandomized graph
products. Comput. Complexity, 5(1):60–75, 1995. [doi:10.1007/BF01277956] 446, 451

[4] NOGA ALON, ODED GOLDREICH, JOHAN HÅSTAD, AND RENÉ PERALTA: Simple construction
of almost k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304,
1992. Preliminary version in FOCS’90. [doi:10.1002/rsa.3240030308] 443

[5] NOGA ALON, RAPHAEL YUSTER, AND URI ZWICK: Color-coding. J. ACM, 42(4):844–856, 1995.
Preliminary version in STOC’94. [doi:10.1145/210332.210337] 449, 452

[6] ROY ARMONI, MICHAEL E. SAKS, AVI WIGDERSON, AND SHIYU ZHOU: Discrepancy sets and
pseudorandom generators for combinatorial rectangles. In Proc. 37th FOCS, pp. 412–421. IEEE
Comp. Soc. Press, 1996. [doi:10.1109/SFCS.1996.548500] 443

[7] AVRIM BLUM, ADAM KALAI, AND HAL WASSERMAN: Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM, 50(4):506–519, 2003. Preliminary version in
STOC’00. [doi:10.1145/792538.792543] 442

[8] GUY EVEN, ODED GOLDREICH, MICHAEL LUBY, NOAM NISAN, AND BOBAN VELIC̆KOVIĆ:
Efficient approximation of product distributions. Random Structures & Algorithms, 13(1):1–16,
1998. Preliminary version in STOC’92. [doi:10.1002/(SICI)1098-2418(199808)13:1<1::AID-
RSA1>3.0.CO;2-W] 443, 445

[9] WILLIAM FELLER: An Introduction to Probability Theory and its Applications, Vol 2. Wiley, 1971.
450

[10] MICHAEL L. FREDMAN, JÁNOS KOMLÓS, AND ENDRE SZEMERÉDI: Storing a sparse table
with 0(1) worst case access time. J. ACM, 31(3):538–544, 1984. Preliminary version in FOCS’82.
[doi:10.1145/828.1884] 446

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 467

http://dx.doi.org/10.1109/SFCS.1979.34
http://dx.doi.org/10.1016/0196-6774(86)90019-2
http://dx.doi.org/10.1016/0196-6774(86)90019-2
http://dx.doi.org/10.1007/BF01277956
http://dx.doi.org/10.1109/FSCS.1990.89575
http://dx.doi.org/10.1002/rsa.3240030308
http://dx.doi.org/10.1145/195058.195179
http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1109/SFCS.1996.548500
http://dx.doi.org/10.1145/335305.335355
http://dx.doi.org/10.1145/792538.792543
http://dx.doi.org/10.1145/129712.129714
http://dx.doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
http://dx.doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
http://dx.doi.org/10.1109/SFCS.1982.39
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

[11] PARIKSHIT GOPALAN, RAGHU MEKA, OMER REINGOLD, AND DAVID ZUCKERMAN: Pseudo-
random generators for combinatorial shapes. In Proc. 43rd STOC, pp. 253–262. ACM Press, 2011.
[doi:10.1145/1993636.1993671] 442, 444, 448, 450, 451

[12] SHLOMO HOORY, NATHAN LINIAL, AND AVI WIGDERSON: Expander graphs and their ap-
plications. Bulletin of the AMS, 43(4):439–561, 2006. [doi:10.1090/S0273-0979-06-01126-8]
445

[13] RUSSELL IMPAGLIAZZO AND AVI WIGDERSON: P = BPP if E requires exponential cir-
cuits: Derandomizing the XOR lemma. In Proc. 29th STOC, pp. 220–229. ACM Press, 1997.
[doi:10.1145/258533.258590] 442

[14] MICHAL KOUCKÝ, PRAJAKTA NIMBHORKAR, AND PAVEL PUDLÁK: Pseudorandom generators
for group products: extended abstract. In Proc. 43rd STOC, pp. 263–272. ACM Press, 2011.
[doi:10.1145/1993636.1993672] 442

[15] NATHAN LINIAL, MICHAEL LUBY, MICHAEL E. SAKS, AND DAVID ZUCKERMAN: Efficient
construction of a small hitting set for combinatorial rectangles in high dimension. Combinatorica,
17(2):215–234, 1997. Preliminary version in STOC’93. [doi:10.1007/BF01200907] 442, 443, 444,
447, 452, 454, 458

[16] SHACHAR LOVETT, OMER REINGOLD, LUCA TREVISAN, AND SALIL P. VADHAN: Pseudoran-
dom bit generators that fool modular sums. In Proc. 13th Internat. Workshop on Randomization and
Computation (RANDOM’09), pp. 615–630. Springer, 2009. [doi:10.1007/978-3-642-03685-9_46]
442, 443

[17] CHI-JEN LU: Improved pseudorandom generators for combinatorial rectangles. Combinatorica,
22(3):417–434, 2002. Preliminary version in ICALP’98. [doi:10.1007/s004930200021] 442, 443

[18] RAGHU MEKA AND DAVID ZUCKERMAN: Small-bias spaces for group products. In Proc.
13th Internat. Workshop on Randomization and Computation (RANDOM’09), pp. 658–672, 2009.
[doi:10.1007/978-3-642-03685-9_49] 443

[19] ROBIN A. MOSER AND GÁBOR TARDOS: A constructive proof of the general Lovász Local Lemma.
J. ACM, 57(2):11, 2010. Preliminary version in STOC’09. [doi:10.1145/1667053.1667060] 442

[20] JOSEPH NAOR AND MONI NAOR: Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993. Preliminary version in STOC’90.
[doi:10.1137/0222053] 443

[21] NOAM NISAN: Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. Preliminary version in STOC’90. [doi:10.1007/BF01305237] 442

[22] NOAM NISAN AND AVI WIGDERSON: Hardness vs randomness. J. Comput. System Sci., 49(2):149–
167, 1994. [doi:10.1016/S0022-0000(05)80043-1] 442

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 468

http://dx.doi.org/10.1145/1993636.1993671
http://dx.doi.org/10.1090/S0273-0979-06-01126-8
http://dx.doi.org/10.1145/258533.258590
http://dx.doi.org/10.1145/1993636.1993672
http://dx.doi.org/10.1145/167088.167166
http://dx.doi.org/10.1007/BF01200907
http://dx.doi.org/10.1007/978-3-642-03685-9_46
http://dx.doi.org/10.1007/BFb0055056
http://dx.doi.org/10.1007/s004930200021
http://dx.doi.org/10.1007/978-3-642-03685-9_49
http://dx.doi.org/10.1145/1536414.1536462
http://dx.doi.org/10.1145/1667053.1667060
http://dx.doi.org/10.1145/100216.100244
http://dx.doi.org/10.1137/0222053
http://dx.doi.org/10.1145/100216.100242
http://dx.doi.org/10.1007/BF01305237
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.4086/toc

OPTIMAL HITTING SETS FOR COMBINATORIAL SHAPES

[23] NOAM NISAN AND DAVID ZUCKERMAN: Randomness is linear in space. J. Comput. System Sci.,
52(1):43–52, 1996. Preliminary version in STOC’93. [doi:10.1006/jcss.1996.0004] 442

[24] YUVAL RABANI AND AMIR SHPILKA: Explicit construction of a small ε-net for linear thresh-
old functions. SIAM J. Comput., 39(8):3501–3520, 2010. Preliminary version in STOC’09.
[doi:10.1137/090764190] 443, 446, 450, 460

[25] JEANETTE P. SCHMIDT AND ALAN SIEGEL: The analysis of closed hashing under lim-
ited randomness (extended abstract). In Proc. 22nd STOC, pp. 224–234. ACM Press, 1990.
[doi:10.1145/100216.100245] 446

[26] RONEN SHALTIEL AND CHRISTOPHER UMANS: Pseudorandomness for approximate count-
ing and sampling. Comput. Complexity, 15(4):298–341, 2006. Preliminary version in CCC’05.
[doi:10.1007/s00037-007-0218-9] 442

[27] THOMAS WATSON: Pseudorandom generators for combinatorial checkerboards. Comput. Com-
plexity, pp. 1 – 43, 2012. Preliminary version in CCC’11. [doi:10.1007/s00037-012-0036-6]
443

AUTHORS

Aditya Bhaskara
Postdoctoral Researcher
EPFL
bhaskara cs princeton edu
http://www.cs.princeton.edu/~bhaskara/

Devendra Desai
Ph. D. student
Rutgers University
devdesai cs rutgers edu
http://www.cs.rutgers.edu/~devdesai/

Srikanth Srinivasan
Assistant Professor
IIT Bombay
srikanth math iitb ac in
http://math.iitb.ac.in/~srikanth/

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 469

http://dx.doi.org/10.1145/167088.167162
http://dx.doi.org/10.1006/jcss.1996.0004
http://dx.doi.org/10.1145/1536414.1536502
http://dx.doi.org/10.1137/090764190
http://dx.doi.org/10.1145/100216.100245
http://dx.doi.org/10.1109/CCC.2005.26
http://dx.doi.org/10.1007/s00037-007-0218-9
http://dx.doi.org/10.1109/CCC.2011.12
http://dx.doi.org/10.1007/s00037-012-0036-6
http://www.cs.princeton.edu/~bhaskara/
http://www.cs.rutgers.edu/~devdesai/
http://math.iitb.ac.in/~srikanth/
http://dx.doi.org/10.4086/toc

ADITYA BHASKARA, DEVENDRA DESAI, AND SRIKANTH SRINIVASAN

ABOUT THE AUTHORS

ADITYA BHASKARA graduated from Princeton University in 2012; his advisor was Moses
Charikar. His thesis was on finding dense structures in graphs and matrices. His research
interests are in approximation algorithms, and in the use of tools from probability and
convex geometry in theoretical CS. He did his undergraduate studies at IIT Bombay;
he was advised by Abhiram Ranade and Ajit Diwan, who helped shape his interests in
algorithms and theoretical computer science.

DEVENDRA (DEV) DESAI is a Ph. D. student at Rutgers University, advised by Mario
Szegedy. His research interests include approximation algorithms, randomized algo-
rithms, derandomization, hardness of approximation, and combinatorics. During his
undergraduate days in Pune, India, he was mentored in algorithm analysis by Udayan
Kanade, who to this day offers free lectures in various math and computer science areas
to anyone who shows up. Dev’s interest in theoretical CS was further strengthened during
his master’s studies at IIT Kharagpur. In his free time he likes to take short walks and,
when stationary, likes listening to 70’s rock and Hindi music.

SRIKANTH SRINIVASAN got his undergraduate degree from the Indian Institute of Technol-
ogy Madras, where his interest in the theory side of CS was piqued under the tutelage
of N. S. Narayanswamy. Subsequently, he obtained his Ph. D. from The Institute of
Mathematical Sciences, Chennai, in 2011; his advisor was V. Arvind. His research
interests span all of TCS (in theory), but in practice are limited to circuit complexity,
derandomization, and related areas of mathematics. He enjoys running and pretending to
play badminton.

THEORY OF COMPUTING, Volume 9 (13), 2013, pp. 441–470 470

http://www.princeton.edu
http://www.cs.princeton.edu/~moses/
http://www.cs.princeton.edu/~moses/
http://www.cse.iitb.ac.in
http://www.cse.iitb.ac.in/~ranade/
http://www.cse.iitb.ac.in/~aad/
http://www.rutgers.edu
http://www.cs.rutgers.edu/~szegedy/
http://www.cs.rutgers.edu/~szegedy/
http://www.udayankanade.org/
http://www.udayankanade.org/
http://www.iitkgp.ac.in/
http://www.iitm.ac.in
http://www.iitm.ac.in
http://www.cse.iitm.ac.in/~swamy/doku.php?id=welcome_to_my_wiki
http://www.imsc.res.in
http://www.imsc.res.in
http://www.imsc.res.in/~arvind
http://dx.doi.org/10.4086/toc

	Introduction
	Preliminaries
	Overview
	Hitting sets for combinatorial thresholds
	High weight case
	Low weight case with small accepting sets
	General low weight case

	Stronger hitting sets for combinatorial rectangles
	Perfect and fractional hash families
	Expander walks
	Open problems
	References

