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Abstract: This paper presents several online scheduling algorithms for two related perfor-
mance metrics, namely maximum response time and maximum delay-factor, and also their
weighted versions. The delay factor metric is new (introduced in Chang et al. (SODA’08)),
while special cases of maximum weighted response time have been considered before. We
study both the standard scheduling model where each arriving job requires its own pro-
cessing, as well as the broadcast scheduling model where multiple requests/jobs can be
simultaneously satisfied.

Motivated by strong lower bounds, we consider the resource augmentation model intro-
duced in Kalyanasundaram and Pruhs (JACM’95) where the algorithm is given a machine
with faster speed than the adversary. We give scalable algorithms; that is, algorithms that
when given (1+ ε)-speed are O(poly(1/ε))-competitive for any fixed ε > 0. Our main
contributions are for broadcast scheduling. Along the way we also show that the FIFO
(first-in-first-out) algorithm is 2-competitive for broadcast scheduling even when pages have
non-uniform sizes. We complement our algorithmic results by showing that a natural greedy
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algorithm modeled after LWF (Longest-Wait-First) is, for any s≥ 1, not constant competitive
for minimizing maximum delay factor when given an s-speed machine. The lower bound
holds even in the restricted setting of standard scheduling of jobs with uniform size, and
demonstrates the importance of the trade-off made in our algorithms.

1 Introduction

Scheduling requests (or jobs1) that arrive online is a fundamental problem faced by many systems and
consequently there is a vast literature on this topic. A variety of models and performance metrics are
studied in order to capture the requirements of a system. In this paper we consider two related performance
metrics, namely response time (also referred to as flowtime) and a recently suggested performance metric
called delay factor [17]. We also address their weighted versions. In particular, we are interested in
scheduling to minimize the maximum (weighted) response time (over all requests) or to minimize the
maximum delay factor. We consider both the traditional setting where requests are independent and
require separate processing from the machine and also the more recent setting of broadcast scheduling
where different requests may ask for the same page (or data) and can be simultaneously satisfied by a
single transmission of the page. We first describe the traditional setting, which we refer to as the unicast
setting, to illustrate the definitions and and then describe the extension to the broadcast setting.

We assume that requests arrive online. A request Ji and its properties are known only when it arrives
to the system. We use ai to denote its arrival time and `i to denote its processing time. In the weighted
case Ji has a non-negative weight wi; the unweighted case corresponds to wi = 1 for all i. Consider an
online scheduling algorithm A. Let f A

i denote the completion time or finish time of Ji under A. The
response time of Ji under A is f A

i −ai, in other words the total duration spent by Ji in the system before
its processing is finished. Now we define the delay factor metric. Here it is assumed that each request
Ji has a deadline di that is known upon its arrival. We refer to the quantity Si = (di− ai) as the slack
of request Ji. If f A

i is the finish time of Ji under some schedule A then its delay factor is defined as
max{1,( f A

i −ai)/(di−ai)}. Thus, delay factor measures the ratio of the response time and the slack,
unless the request finishes by its deadline in which case we set its delay factor to 1. In this paper we
are interested in algorithms that minimize the maximum response time and the maximum delay factor.
Given an online request sequence σ and an algorithm A, let αA(σ) = maxJi∈σ γA

i where γA
i is either the

response time or the delay factor of Ji in A; in the weighted case αA(σ) = maxJi∈σ wiγ
A
i . We measure the

performance of an algorithm A via worst-case competitive analysis: A is r-competitive if for all request
sequences σ we have αA(σ)≤ rα∗(σ) where α∗(σ) is the value of an optimum offline schedule for σ .

Now we discuss broadcast scheduling where multiple requests can be satisfied simultaneously. This
model is motivated by applications in wireless and local area networks where information is transmitted
over a broadcast medium [8, 2, 1, 10]; this allows all clients interested in a particular piece of information
to access it at the same time. The model is also motivated by batch scheduling problems [27, 26, 45, 9]
and more recent applications [25, 14]. In the formal model, there are n distinct pages or pieces of data
that are available in the system, and a request from a client specifies a page of interest. This is called
the pull-model since the clients initiate the request and we focus on this model in this paper (in the

1In this paper we use requests instead of jobs since we also address the broadcast scheduling problem where a request for a
page is more appropriate terminology than a job.
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push-model the server transmits the pages according to some frequency). Multiple outstanding requests
for the same page p are satisfied by a single transmission of page p. We use Jp,i to denote i’th request for
a page p ∈ {1,2, . . . ,n}; here we assume that the requests for the same page are ordered by arrival time
with ties broken arbitrarily. We let ap,i denote the arrival time of the request Jp,i. Requests may also have
deadlines, denoted dp,i and non-negative weights wp,i. The finish time f A

p,i of a request Jp,i in a given
schedule A is defined to be the earliest time after ap,i when the page p is transmitted by the schedule A.
Note that multiple requests for the same page can have the same finish time. The response time and delay
factor for a request Jp,i are defined as ( f A

p,i−ap,i) and max{1,( f A
p,i−ap,i)/(dp,i−ap,i)} respectively. As

before, given an online request sequence σ and an algorithm A, we let αA(σ) = maxJp,i∈σ γA
p,i where γA

p,i

is either the response time or the delay factor of Jp,i in A; in the weighted case αA(σ) = maxJi∈σ wp,iγ
A
p,i.

Here too we are interested in competitive analysis. A significant portion of the broadcast scheduling
literature focused on the case where all page sizes are the same which can be assumed to be one (unit)
without loss of generality. We call this the uniform page size setting. We also consider the non-uniform
page size setting where pages have potentially different sizes. When page sizes are non-uniform, one has
to carefully define when a request for a page is satisfied if it arrives midway through the transmission
of that page. In this paper we consider the sequential model [28], the most restrictive one, where the
server broadcasts each page sequentially and a client receives the page sequentially without buffering;
see [43] for the relationship between different models. When pages have non-uniform sizes, each page
p is divided into an ordered list of uniform sized pieces (1, p),(2, p), . . . ,(`p, p) where `p is the size of
page p. In the sequential setting, a client must receive the pieces in sequential order.

Motivation There are a variety of metrics in the scheduling literature and perhaps the best known metric
in the online setting is to minimize the average (equivalently total) response time. Minimizing average
response time can potentially delay some requests at the expense of others and can lead to starvation
and unfairness. Other metrics can be and are used to overcome this issue. A more stringent metric is to
minimize the maximum response time and for unicast scheduling it is easy to see that the non-preemptive
first-in-first-out algorithm (FIFO) is optimal on a single machine. Interestingly, FIFO was considered
for minimizing maximum response time in broadcast scheduling in one of the early papers on broadcast
scheduling by Bartal and Muthukrishnan [10] where it was claimed to be 2-competitive. It was only
fairly recently that a formal proof was established by Chang et al. [17]. Maximum response time and
FIFO do not distinguish between requests of different sizes. Bender, Chakrabarti and Muthukrishnan [11]
introduced the metric of minimizing the maximum stretch where the stretch of a request is the ratio
between the response time to its processing time. They reasoned that requests are sensitive to delay in
proportion to their processing time, and were also motivated by scheduling applications in databases and
web servers; see [13, 37, 44] for further discussion.

The metrics we consider, in addition to their inherent interest, also generalize maximum stretch in
different ways. One can easily see that stretch is a special case of weighted response time where the
weight is the inverse of the processing time. Weights allow more flexibility in assigning priority to
requests. Surprisingly, this natural generalization has not received attention in the literature. Delay factor
is motivated by a variety of applications, in particular real-time systems, where requests naturally have
deadlines associated with them. In real-time systems, a hard deadline implies that it cannot be missed,
while a soft deadline implies some flexibility in violating it. In online settings it is difficult to respect
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hard deadlines. Previous work has addressed hard deadlines by either considering periodic tasks or other
restrictions [15], or by focusing on maximizing throughput (the number of requests completed by their
deadline) [39, 16, 46]. It was recently suggested by Chang et al. [17] that delay factor is a useful and
natural relaxation to consider in situations with soft deadlines where we still desire all requests to be
satisfied. Moreover, we note that if we set di = ai + `i (in the unicast setting) the delay factor of a request
is identical to its stretch in any schedule.

1.1 Results

We give the first non-trivial results for online scheduling to minimize the maximum delay factor and
weighted response time in both the unicast and broadcast settings. Throughout we assume that requests
are allowed to be preempted without any penalty. We remark that weighted response time and delay factor,
though formally not equivalent, behave similarly in terms of algorithmic development. At a heuristic
level, one can interpret the term 1/(di−ai) in the delay factor metric as the weight wi. For this reason,
we mainly discuss results for delay factor below and point out how they generalize to weighted response
time.

We first prove strong lower bounds on online competitiveness for delay factor.

• For unicast setting no online algorithm is ∆0.4/2-competitive where ∆ is the ratio between the
maximum and minimum slacks.

• For broadcast scheduling with n uniform sized pages there is no n/4-competitive algorithm.

We resort to resource augmentation analysis, introduced by of Kalyanasundaram and Pruhs [35], to
overcome the above lower bounds. In this analysis the online algorithm is given a faster machine than the
optimal offline algorithm. For s≥ 1, an algorithm A is said to be s-speed r-competitive if A, when given
s-speed machine(s), achieves a competitive ratio of r compared to the optimum schedule given 1-speed
machine(s). We prove the following.

• For unicast setting, for any ε ∈ (0,1], there are (1+ ε)-speed O(1/ε)-competitive algorithms in
both single and multiple machine cases. Moreover, the algorithm for the multiple machine case
immediately dispatches an arriving request to a machine, and is non-migratory. An algorithm is
non-migratory if it processes each request on a single machine to which it is first assigned.

• For broadcast setting, for any ε ∈ (0,1], there is a (1+ ε)-speed O(1/ε2)-competitive algorithm
for uniform pages. For non-uniform sized pages, for any ε ∈ (0,1], there is a (1+ ε)-speed
O(1/ε3)-competitive algorithm.

Our results for minimizing maximum delay factor can be easily extended to the problems of minimiz-
ing maximum weighted response time and minimizing maximum weighted delay factor. We also address
the problem of minimizing the maximum response time in broadcast scheduling. We already mentioned
that FIFO is 2-competitive when pages have uniform sizes [17]. In this paper we show the following.

• FIFO is 2-competitive for minimizing the maximum response time for non-uniform sized pages in
the broadcast model.
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The above result was claimed in [10] but it was only in [17] that a formal proof was given for uniform
sized pages with integer arrival times for all requests. The proof in [17] is short but delicate and it does
not appear to generalize when page sizes are non-uniform. Our proof differs from the one in [17] and is
inspired by our analysis for the delay factor metric. A competitive ratio of 2 is the best positive result
that can be achieved; for any fixed ε > 0 there is a lower bound of (2− ε) on the competitive ratio for
minimizing the maximum response time, even if randomization is allowed [19].

Our final result is a lower bound on the performance of a simple greedy algorithm to minimize the
maximum delay factor. Recall that minimizing the maximum delay factor metric is a generalization
of the problem of minimizing the maximum response time. For the latter FIFO is optimal for unicast
scheduling and is 2-competitive for broadcast scheduling. What are natural ways to generalize FIFO
to minimize maximum delay factor and weighted response time? One natural algorithm that extends
FIFO is to schedule the request in the queue that has the largest current delay factor (or current weighted
response time). We call this greedy algorithm LF (longest first) since it can be seen as an extension of the
well-studied algorithm LWF (longest-wait-first) for minimizing average response time. It is known that
LWF is O(1)-competitive with O(1)-speed for average response time [29]. In [21] we showed that LF is
O(1)-speed O(1)-competitive also for Lk norms of response time for small values of k. It is therefore
natural to ask if LF is O(1)-speed O(1)-competitive for minimizing the maximum weighted response
time and delay factor. We show that this is not the case even for unicast scheduling.

• For any constants s,c > 1, LF is not c-competitive with s-speed for minimizing maximum delay
factor (or weighted response time) in unicast scheduling of uniform sized requests.

Our results for the unicast setting are related to, and borrow ideas from, previous work on minimizing
Lp norms of response time and stretch [7] in the single machine and parallel machine settings [3, 20].
Our main results are for broadcast scheduling. Broadcast scheduling has posed considerable difficulties
for algorithm design. Much previous work has focused on the offline setting [36, 31, 32, 33, 5, 4] and
several of these use resource augmentation. The difficulty in broadcast scheduling arises from the fact
that the online algorithm may transmit a page multiple times to satisfy distinct requests for the same page,
while the offline optimum, which knows the sequence in advance, can save work by gathering them into
a single transmission. Online algorithms that maximize throughput [39, 16, 46, 24] get around this by
eliminating requests. Few positive results are known in the online setting where all requests need to be
scheduled [10, 28, 29, 30] and the analysis in all of these is quite non-trivial.

Our algorithm and analysis are direct and explicitly demonstrate the value of making requests wait
for some duration to take advantage of potential future requests for the same page. We hope this idea
can be further exploited in broadcast scheduling. We mention that prior to our work, even in the offline
setting, the only algorithm known for minimizing the maximum delay factor was a 2-speed optimal
algorithm that was based on rounding a linear-programming relaxation [17]. Our algorithm, when
viewed as an offline algorithm, gives a (1+ε)-speed O(1/ε2)-approximation for uniform page sizes (and
O(1/ε3)-approximation for non-uniform page sizes) and is quite simple.

1.2 Other related work

We refer the reader to the survey on online scheduling by Pruhs, Sgall and Torng [42] for a comprehensive
overview of results and algorithms (see also [41]). For requests with deadlines, the well-known earliest-
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deadline-first (EDF) algorithm can be used in the offline setting to check if all the requests can be
completed before their deadline. A substantial amount of literature exists in the real-time systems
community in understanding and characterizing restrictions on the request sequence that allow for
schedulability of requests with deadlines when they arrive online or periodically. Previous work on soft
deadlines is also concerned with characterizing inputs that allow for bounded tardiness. We refer the
reader to [40] for the extensive literature on scheduling issues in real-time systems.

Closely related to our work is that on minimizing the maximum stretch [11] where it is shown that no
online algorithm is O(P0.3) competitive where P is the ratio of the largest job size to the smallest job size.
[11] also gives an O(

√
P) competitive algorithm which was further refined in [13]. Resource augmentation

analysis for Lp norms of response time and stretch from the work of Bansal and Pruhs [7] implicitly
shows that the shortest job first (SJF) algorithm is a (1+ ε)-speed O(1/ε)-competitive algorithm for
minimizing the maximum stretch. Our work shows that this analysis can be generalized for the delay
factor metric. For multiple processors our analysis is inspired by the ideas from [3, 20]. In [12], the
authors suggest the delay factor metric as a performance measure under the name of maximum interval
stretch. They consider a model where the processing speed a request receives increases as the request
approaches its deadline. Implicit in their work is a resource augmentation result in the unicast setting
when there exists an offline schedule that finishes all the requests by their deadline.

Broadcast scheduling has seen a substantial amount of research in recent years; apart from the work
that we have already cited we refer the reader to [18, 38], the recent paper of Chang et al. [17], and the
surveys [42, 41] for several pointers to known results. Our work on delay factor is inspired by [17]. As
we mentioned already, a large amount of the work on broadcast scheduling has been on offline algorithms
including NP-hardness results and approximation algorithms (often with resource augmentation). For
minimizing the maximum delay factor there is a 2-speed optimal algorithm in the offline setting and it
is also known that unless P = NP there is no (2− ε) approximation [17]. Besides the works already
mentioned, in the online setting the following results are currently known. For minimizing the average
response time, several algorithms that are O(1)-competitive with O(1)-speed were developed starting
with the work of Edmonds and Pruhs [28]. This work has recently culminated in scalable algorithms
that are O(1)-competitive with (1+ ε)-speed for any fixed ε > 0 [34, 6]. Constant competitive online
algorithms were given for maximizing throughput [39, 16, 46, 24] when pages have uniform sizes.

Notation We let Si = di− ai denote the slack of Ji in the unicast setting. When requests have non-
uniform processing times (or lengths) we use `i to denote the length of Ji. We assume without loss of
generality that Si ≥ `i. In the broadcast setting, Jp,i denotes the i’th request for page p. We assume that
the requests for a page are ordered by arrival time and hence ap,i ≤ ap, j for i < j. In both settings we use
∆ to denote the ratio of maximum slack to the minimum slack in a given request sequence. When pages
have non-uniform sizes, `p denotes the size of page p. For an interval I = [a,b] on the real line we use
|I| for the length of the interval (b−a). We say a request is alive at t if has arrived by t but has not yet
finished.

Organization We discuss algorithms for unicast scheduling in Section 2. Our main results on broadcast
scheduling are presented in Section 3. We mainly describe algorithms for minimizing the maximum delay
factor. These can be extended relatively easily for weighted delay factor and weighted response time.
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We give details of this extension only for broadcast scheduling, in Section 4. The lower bound for LF is
described in Section 5.

2 Unicast scheduling

In this section we address the unicast setting where requests are independent and consider the delay factor
metric. For a request Ji, recall that ai,di, `i, fi denote the arrival time, deadline, processing time/size, and
finish time, respectively. An instance with all `i = 1 (or more generally the processing times are uniform)
is referred to as a uniform processing time instance. It is easy to see that preemption does not help much
for uniform processing time instances when the maximum delay factor metric is considered. Assuming
that the processing times are integer valued, in the single machine setting one can reduce an instance with
non-uniform processing times to an instance with uniform processing times as follows: replace Ji, with
processing time `i by `i uniform sized requests with the same arrival time and deadline as that of Ji.

We remarked earlier that scheduling to minimize the maximum stretch is a special case of scheduling
to minimize the maximum delay factor. In [11] a lower bound of P1/3 is shown for minimizing the
maximum stretch where P is the ratio of the maximum processing time to the minimum processing
time. They show that this lower bound holds even when P is known to the algorithm. This implies a
lower bound of ∆1/3 for minimizing the maximum delay factor. Here we improve the lower bound for
minimizing maximum stretch to P0.4/2 when the online algorithm is not aware of P. The lower bound
example is similar to that given in [11].

Theorem 2.1. Any 1-speed deterministic algorithm has competitive ratio at least P0.4/2 for minimizing
the maximum stretch when P is not known in advance to the algorithm.

Proof. P will denote the ratio of the maximum to minimum processing time. For the example created, P
will depend on the decisions the online algorithm makes. For the sake of contradiction, assume that some
online algorithm A achieves a competitive ratio better than P0.4/2. Now consider the following example,
where L is chosen so that the parameters in the following example are integral.

Type 1: At time 0 a request with processing time L arrives.

Type 2: At times L−L0.6,L,L+L0.6, · · · ,L1.16−L0.6, that is at times L−L0.6 +L0.6 · i for
integral i ∈ [0,L0.56−L0.4], let a request with processing time L0.6 arrive.

Consider time L1.16. If this is the entire sequence of requests, then the optimal schedule can be
described as follows. It schedules these requests in a first-in-first-out fashion. The optimal schedule
finishes the request of type 1 by time L, and hence the stretch of this request is 1. The requests of type
2 finish 2L0.6 time units after their arrival. Thus, the maximum stretch of any request in the optimal
schedule is 2L0.6/L0.6 = 2.

The ratio of maximum to minimum processing time of the requests seen so far is P = L/L0.6 = L0.4.
Thus, the maximum stretch algorithm A can have is (L0.4)0.4/2 = L0.16/2, by assumption. Suppose
A does not finish the request of type 1 by time L1.16. In this case, the stretch of this request in the
algorithm’s schedule will be at least L1.16/L = L0.16. Thus, the algorithm has a competitive ratio at least
L0.16/2 = P0.4/2, a contradiction. Therefore, by time L1.16 the algorithm A must have finished the request
of type 1. Immediately after this time, requests of type 3 arrive.
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Type 3: Starting at time L1.16 a set of L1.2−L0.6 unit processing time requests arrive as
follows. These requests arrive one after another; one such request arrives at each integer time
step during [L1.16,L1.16 +L1.2−L0.6].

This is the entire request sequence. We now analyze the behavior of an optimum schedule for this
sequence and compare it to that of A. An optimal schedule for this sequence schedules the request of
type 1 from time 0 until time L−L0.6. At time L−L0.6, the type 1 request has L0.6 remaining processing
time left; the optimal solution schedules requests of type 2 and type 3 requests as they arrive. It is easy
to verify that the stretch of requests of type 2 and 3 is 1 in this schedule. At time L1.16 +L1.2−L0.6 the
optimum schedule finishes the request of type 1. Thus the maximum stretch of this schedule is for the
type 1 request and is equal to (L1.16 +L1.2)/L≤ 2L0.2.

As we argued earlier, A must have completely scheduled the request of type 1 by time L1.16. Thus
the last request it finishes is either of type 2 or type 3. A has a volume of at least L0.6 of type 2 requests
left to complete at time L1.16. If the last request completed by A is of type 2 then this request must have
waited for all requests of type 3 to finish. Since the arrival time of a type 2 request is at most L1.16−L0.6

and the request is completed by time L1.16 +L1.2−L0.6 at the earliest (this time is the latest arrival of a
type 3 request), the total time this request waits to be satisfied is L1.16 +L1.2−L0.6− (L1.16−L0.6) = L1.2.
Thus the stretch of this request is at least L1.2/L0.6 = L0.6. If the last request satisfied by the algorithm
is of type 3, then this request must have waited for L0.6 time since a L0.6 volume of processing time of
type 2 requests remained in the algorithm’s queue when type 3 requests began arriving. The stretch of
this request is therefore at least L0.6. Notice that the ratio of maximum to minimum processing time is
P = L. In either case, the competitive ratio of the algorithm is at least L0.6/2L0.2 = L0.4/2 = P0.4/2, a
contradiction.

Recall that ∆ is the ratio of the maximum slack to the minimum slack in a given sequence of requests.
From the above we have the following corollary for delay factor.

Corollary 2.2. Any deterministic online algorithm has competitive ratio at least ∆0.4/2 for minimizing
the maximum delay factor when requests have uniform sizes and ∆ is not known in advance to the
algorithm.

In the next two subsections we show that with (1+ ε) resource augmentation simple algorithms
achieve an O(1/ε) competitive ratio.

2.1 Single machine scheduling

In this section we consider a simple greedy algorithm for minimizing the maximum delay factor on a
single machine when requests have non-uniform sizes. We analyze the simple shortest-slack-first (SSF)
algorithm which at any time t schedules the request with the shortest slack. Recall that the slack of a
request Ji is di−ai and that we have assumed without loss of generality that all requests have uniform
sizes.
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Algorithm: SSF

• Let Q(t) be the set of alive requests at t.

• Let Ji be the request with the minimum slack among requests in Q(t), ties
broken by arrival time.

• Preempt the current request and schedule Ji if it is not being processed.

Theorem 2.3. The algorithm SSF is an (1+ ε)-speed 1/ε-competitive online algorithm for minimizing
the maximum delay factor in the unicast setting.

Proof. Consider an arbitrary request sequence σ and let αSSF be the maximum delay factor achieved
by SSF on σ . If αSSF = 1 there is nothing to prove, so assume that αSSF > 1. Let Ji be the request that
witnesses αSSF, that is αSSF = ( fi−ai)/Si. Note that SSF does not process any request with slack more
than Si in the interval [ai, fi]. Let t be the minimum value less than or equal to ai such that SSF was busy
processing only requests with slack at most Si in the interval [t, fi]. It follows that SSF had no requests
with slack ≤ Si just before t. The total work that SSF processed in [t, fi] on requests with slack less than
equal to Si is (1+ε)( fi− t) and all these requests arrive in the interval [t, fi]. An optimal offline algorithm
with 1-speed can do total work of at most ( fi− t) in the interval [t, fi] and hence the earliest time by which
it can finish these requests is fi + ε( fi− t)≥ fi + ε( fi−ai). Since all these requests have slack at most Si

and have arrived before fi, it follows that α∗ ≥ ε( fi−ai)/Si where α∗ is the maximum delay factor of
the optimal offline algorithm with 1-speed machine. Therefore, we have that αSSF/α∗ ≤ 1/ε .

Remark 2.4. For uniform processing time requests, the algorithm that non-preemptively schedules
requests with the shortest slack is a (1+ ε)-speed 2/ε-competitive online algorithm for minimizing the
maximum delay factor.

2.2 Multiple machine scheduling

We now consider minimizing the maximum delay factor when there are m machines. In the multiple
machine setting, at any time a machine can choose to process at most one request and a request can be
processed by at most one machine at a given time. A request is allowed to migrate and be processed by
different machines at different times; as we remarked earlier, a schedule or algorithm is non-migratory
if it does not migrate any request. To adapt SSF to this setting we take intuition from previous work
on minimizing Lk norms of flow time and stretch [7, 3, 20]. We develop an algorithm that immediately
dispatches an arriving request to a machine, and further does not migrate an assigned request to a different
machine once it is assigned. Each machine essentially runs the single machine SSF algorithm and thus
the only remaining ingredient to describe is the dispatching rule. For this purpose the algorithm groups
requests into classes based on their slack. A request Ji is said to be in class k if Si ∈ [2k,2k+1). The
algorithm maintains the total processing time of requests (referred to as volume) that have been assigned
to machine x in each class k. Let Ux

=k(t) denote the total processing time of requests assigned to machine
x by time t of class k. With this notation, the algorithm SSF-ID (for SSF with immediate dispatch) can be
described.
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Algorithm: SSF-ID

• When a new request Ji of class k arrives at time t, assign it to a machine x where
Ux
=k(t) = minyUy

=k(t).

• Use SSF on each machine separately.

The rest of this section is devoted to the proof of the following theorem.

Theorem 2.5. SSF-ID is a (1+ ε)-speed O(1/ε)-competitive online algorithm for minimizing the maxi-
mum delay factor on m identical machines.

We need a fair amount of notation. For each time t, machine x, and class k we define several quantities.
For example Ux

=k(t) is the total volume assigned to machine x in class k by time t. We use the predicate
“≤ k” to indicate classes 1 to k. Thus Ux

≤k(t) is the total volume assigned to machine x in classes 1 to
k. We let Rx

=k(t) to denote the remaining processing time on machine x at time t and let Px
=k(t) denote

the total volume that x has finished on requests in class k by time t. Note that Px
=k(t) =Ux

=k(t)−Rx
=k(t).

All these quantities refer to the algorithm SSF-ID. We use V ∗=k(t) and V=k(t) to denote the remaining
volume of requests in class k in an optimal offline algorithm with speed 1 and SSF-ID with speed (1+ ε),
respectively. Observe that V=k(t) = ∑x Rx

=k(t). The quantities V ∗≤k(t) and V≤k(t) are defined analogously.
The algorithm SSF-ID balances the amount of processing time for requests with similar slack. Note

that the assignment of requests is not based on the current volume of unfinished requests on the machines,
rather the assignment is based on the volume of requests that were assigned in the past to different
machines. We begin our proof by showing that for any k the total volume of requests of class at most k
that is assigned is balanced across the machines. This easily follows from the dispatching policy of the
algorithm. Several of the lemmas below and their proofs follow from the work in [3, 20].

Proposition 2.6. For any time t and two machines x and y, |Ux
=k(t)−Uy

=k(t)| ≤ 2k+1. This also implies
that |Ux

≤k(t)−Uy
≤k(t)| ≤ 2k+2.

Proof. The first inequality holds since all of the requests of class k are of size ≤ 2k+1. The second
inequality follows easily from the first.

Lemma 2.7. Consider any two machines x and y. At any time t, the difference in volume of requests that
already have been processed is bounded as |Px

≤k(t)−Py
≤k(t)| ≤ 2k+2.

Proof. Suppose the lemma is false. Then there is the first time t0 when Px
≤k(t0)−Py

≤k(t0) = 2k+2 and
small constant δ t > 0 such that Px

≤k(t0 +δ t)−Py
≤k(t0 +δ t)> 2k+2. Let t ′ = t0 +δ t. For this to occur, x

processes a request of class ≤ k during the interval I = [t0, t ′] while y processes a request of class > k.
Since each machine uses SSF, it must be that y had no requests in classes ≤ k during I which implies that
Uy
≤k(t

′) = Py
≤k(t

′). Therefore,

Uy
≤k(t

′) = Py
≤k(t

′)< Px
≤k(t

′)−2k+2 ≤Ux
≤k(t

′)−2k+2 ,
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since Px
≤k(t

′)≤Ux
≤k(t

′). However, this implies that

Uy
≤k(t

′)<Ux
≤k(t

′)−2k+2 ,

a contradiction to Proposition 2.6.

Lemma 2.8. At any time t the difference between the residual volume of requests that needs to be
processed, on any two different machines x and y, is bounded as |Rx

≤k(t)−Ry
≤k(t)| ≤ 2k+3.

Proof. Combining Proposition 2.6, Lemma 2.7, and the fact that Rx
≤k(t) =Ux

≤k(t)−Px
≤k(t) for any x and

k by definition then,

|Rx
≤k(t)−Ry

≤k(t)| ≤ |U
x
≤k(t)−Uy

≤k(t)|+ |P
x
≤k(t)−Py

≤k(t)| ≤ 2k+3 .

Corollary 2.9. At any time t, V ∗≤k(t)≥V≤k(t)−m2k+3.

We are now ready to upper bound the competitiveness of SSF-ID when given (1+ ε)-speed in a
similar fashion to the single machine case. Consider an arbitrary request sequence σ and let Ji be the
request that witnesses the maximum delay factor αSSF-ID of SSF-ID. Let k be the class of Ji and let x be
the machine Ji was processed on by SSF-ID. We know that αSSF-ID = ( fi−ai)/Si by definition of Ji. We
use α∗ to denote the delay factor of some fixed optimal algorithm that uses m machines of speed 1.

Let t be the last time before ai when machine x processed a request of class > k under SSF-ID’s
schedule. Note that t ≤ ai since x does not process any request of class > k in the interval [ai, fi]. At
time t we know by Corollary 2.9 that V ∗≤k(t)≥V≤k(t)−m2k+3. If fi ≤ ai +2k+4 then SSF-ID achieves a
competitive ratio of 16 since Ji is in class k. Thus we will assume from now on that fi > ai +2k+4.

During the interval I = [t, fi), SSF-ID completes a total volume of (1+ ε)( fi− t) work on machine x.
Using Lemma 2.7, any other machine y also processes a volume of (1+ ε)( fi− t)−2k+3 work during
I of requests in classes at most k . Thus the total volume processed by SSF-ID during I of requests in
classes at most k is at least m(1+ε)( fi− t)−m2k+3. During I, the optimal algorithm schedules at most a
m( fi− t) volume of work for requests in classes at most k. Combining this with Corollary 2.9, we see that

V ∗≤k( fi) ≥ V≤k(t)−m2k+3 +m(1+ ε)( fi− t)−m2k+3

≥ V≤k(t)+m(1+ ε)( fi− t)−m2k+4 ≥ εm( fi− t) .

In the last inequality we use the fact that fi− t ≥ fi−ai ≥ 2k+4. Without loss of generality assume that
no requests arrives exactly at fi. Therefore V ∗≤k( fi) is the total volume of requests in classes 1 to k that the
optimal algorithm has left to finish at time fi and all these requests have arrived before fi. The earliest
time that the optimal algorithm can finish all these requests is fi + ε( fi− t) and therefore it follows that
α∗ ≥ ε( fi− t)/2k+1. Since αSSF-ID ≤ ( fi−ai)/2k and t ≤ ai, it follows that αSSF-ID ≤ 2α∗/ε .

Thus αSSF-ID ≤max{16,2α∗/ε} which completes the proof of Theorem 2.5.
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3 Broadcast scheduling

We now move our attention to the broadcast model where multiple requests can be satisfied by the
transmission of a single page. Most of the literature in broadcast scheduling is concerned with the case
where all pages have uniform sizes which is assumed to be unit. Here we consider both the case where
pages have uniform and non-uniform sizes. We start by focusing on minimizing the maximum response
time of a schedule and then shift our focus to minimizing the maximum delay factor.

3.1 Response time

In this section we analyze FIFO for minimizing maximum response time when page sizes are non-uniform.
As mentioned previously, it is known that FIFO is 2-competitive when pages have uniform sizes [17].
We first describe the algorithm FIFO. FIFO broadcasts pages non-preemptively; the optimal solution
is allowed to use preemption. Consider a time t when FIFO finished broadcasting a page or a request
arrives when FIFO has no unsatisfied requests just before time t. Let Jp,i be the request in FIFO’s queue
with earliest arrival time breaking ties arbitrarily. FIFO begins broadcasting page p at time t. At any
time during this broadcast, we will say that Jp,i forced FIFO to broadcast page p at this time. When
broadcasting a page p all requests for page p that arrived before or at the start of the broadcast are
simultaneously satisfied when the broadcast completes. Any request for page p that arrives during the
broadcast are not satisfied until the next full transmission of p. Recall that we are assuming the sequential
model where the client does not buffer. The rest of this section will be devoted to proving the following
theorem.

Theorem 3.1. FIFO is a 2-competitive online algorithm for minimizing the maximum response time in
broadcast scheduling when pages have non-uniform sizes.

We do not assume speed augmentation when analyzing FIFO. Let σ be an arbitrary sequence of
requests. Let OPT denote some fixed optimum schedule and let ρ∗ denote the optimum maximum
response time and ρFIFO denote FIFO’s maximum response time. We will show that ρFIFO ≤ 2ρ∗. For
the sake of contradiction, assume that FIFO witnesses a response time cρ∗ by some request Jq,k for some
c > 2. Let t∗ be the time Jq,k is satisfied, that is t∗ = fq,k. Let t1 be the smallest time less than t∗ such that
at any time t during the interval [t1, t∗] the request which forces FIFO to broadcast a page at time t has
response time at least ρ∗ when satisfied. Note that t1 ≤ t∗− `q where `q is the length of page q. We let I
denote the interval [t1, t∗]. Let JI denote the requests which forced FIFO to broadcast during I. Notice
that during the interval I, all requests in JI are completely satisfied during this interval. In other words,
any request in JI starts being satisfied during I and is finished during I.

We say that OPT merges two distinct requests for a page p if they are satisfied by the same broadcast.

Lemma 3.2. OPT cannot merge any two requests in JI into a single broadcast.

Proof. Let Jp,i,Jp, j ∈ JI such that i < j. Note that Jp,i is satisfied before Jp, j. Let t ′ be the time that FIFO
starts satisfying request Jp,i. By the definition of I, request Jp,i has response time at least ρ∗. The request
Jp, j must arrive after time t ′, that is ap, j > t ′, otherwise request Jp, j is satisfied by the same broadcast of
page p that satisfied Jp,i. Therefore, it follows that if OPT merges Jp,i and Jp, j then the finish time of Jp,i
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in OPT is strictly greater than its finish time in FIFO which is already at least ρ∗; this is a contradiction
to the definition of ρ∗.

Lemma 3.3. All requests in JI arrived no earlier than time t1−ρ∗.

Proof. For the sake of contradiction, suppose some request Jp,i ∈ JI arrived at time ap,i < t1−ρ∗. During
the interval [ap,i +ρ∗, t1] the request Jp,i must have wait time at least ρ∗. However, then any request
which forces FIFO to broadcast during [ap,i +ρ∗, t1] must have response time at least ρ∗, contradicting
the definition of t1.

We are now ready to prove Theorem 3.1, stating that FIFO is 2-competitive.

Proof. Recall that all requests in JI are completely satisfied during I. Thus we have that the total size
of requests in JI is |I|. By definition Jq,k witnesses a response time greater than 2ρ∗ and therefore
t∗−aq,k > 2ρ∗. Since Jq,k ∈ JI is the last request done by FIFO during I, all requests in JI must arrive no
later than aq,k. Therefore, these requests must be finished by time aq,k +ρ∗ by the optimal solution. From
Lemma 3.3, all the requests JI arrived no earlier than t1−ρ∗. Thus OPT must finish all requests in JI ,
whose total volume is |I|, during IOPT = [t1−ρ∗,aq,k +ρ∗]. Thus it follows that |I| ≤ |[t1−ρ∗,aq,k +ρ∗]|,
which simplifies to t∗ ≤ aq,k +2ρ∗. This is a contradiction to the assumption that t∗−aq,k > 2ρ∗.

t1−ρ∗ t1 aq,k aq,k +ρ∗ t∗
Time

I

IOPT

Jq,k

Figure 1: Broadcasts by FIFO satisfying requests in JI are shown in blue. Note that aq,k and aq,k +ρ∗

are not necessarily contained in I.

We now discuss the differences between our proof of FIFO for non-uniform sized pages and the proof
given by Chang et al. in [17] showing that FIFO is 2-competitive for uniform sized pages. In [17] it is
shown that at anytime t, F(t), the set of unique pages in FIFO’s queue satisfies the following property:
|F(t) \O(t)| ≤ |O(t)| where O(t) is the set of unique pages in OPT’s queue. This easily implies the
desired bound. To establish this, they use a slot model in which uniform sized pages arrive only during
integer times which allows one to define unique pages. This may appear to be a technicality, however
when considering non-uniform sized pages, it is not clear how one defines unique pages since this number
varies during the transmission of p as requests accumulate. Our approach avoids this issue in a clean
manner by not assuming a slot model or uniform sized pages.
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3.2 Delay factor

In this section we consider minimizing the maximum delay factor in the broadcast setting. We start by
showing that no 1-speed online algorithm can be (n/4)-competitive for minimizing the maximum delay
factor where n is the number of pages. We then prove the following theorem

Theorem 3.4. There is an online algorithm that is (1+ε)-speed O(1/ε2)-competitive for minimizing the
maximum weighted delay factor in the broadcast setting where pages have uniform size. For non-uniform
sized pages there is a (1+ ε)-speed O(1/ε3)-competitive online algorithm.

In Section 3.2.1 we show a (1+ ε)-speed O(1/ε2)-competitive online algorithm for uniform sized
pages and uniform weight requests. Finally, we extend our algorithm and analysis to the case of non-
uniform page sizes and uniform weight requests to obtain a (1+ ε)-speed O(1/ε3)-competitive online
algorithm in Section 3.2.2. In Section 4 we show how to extend these results to the case where requests
have non-uniform weights.

Theorem 3.5. Every 1-speed online deterministic algorithm for broadcast scheduling to minimize the
maximum delay factor has a competitive ratio of at least n/4 where n is the number of pages even when
pages have uniform sizes.

Proof. The lower bound instance we construct is inspired by a lower bound given in [17]. Let A be any
online 1-speed algorithm and let n be a multiple of 4. We consider the following adversary. At time 0,
the adversary requests pages 1, . . . ,n/2, all which have a deadline of n/2. Between time 1 and n/4 the
adversary requests whatever page the online algorithm A broadcasts immediately after that request is
broadcast; this new request also has a deadline of n/2. It follows that at time t = n/2 the online algorithm
A has n/4 requests for distinct pages in its queue. However, the adversary can finish all these requests by
time n/2. Then starting at time n/2 the adversary requests n/2 new pages, say (n/2)+1, . . . ,n. These
new pages are requested, one at each time step, in a cyclic fashion for n2 cycles. More formally, for
i = 1, . . . ,n/2, page (n/2)+ i is requested at times j · (n/2)+ i−1 for j = 1, . . . ,n. Each of these requests
has a slack of one which means that their deadline is one unit after their arrival. The adversary can satisfy
these requests with delay since it has no queue at any time; thus its maximum delay factor is 1. However,
the online algorithm A has n/4 requests in its queue at time n/2; each of these has a slack of n/2. We
now argue that the delay factor of A is at least n/4. If the algorithm satisfies two slack 1 requests for the
same page by a single transmission, then its delay factor is n/2; this follows since the requests for the
same page are n/2 time units apart. Otherwise, the algorithm does not merge any requests for the same
page and hence finishes the the last request by time n/2+n2/2+n/4. If the last request to be finished is
a slack 1 request, then its delay factor is at least n/4 since the last slack 1 requests is released at time
n/2+n2/2. If the last request to be finished is one of the requests with slack n/2, then its delay factor is
at least (n2/2)/(n/2) = n.

3.2.1 Uniform sized pages

In this section we develop an online algorithm, for uniform sized pages, that is competitive given extra
speed. Simple examples show that natural generalizations of the algorithm SSF to the broadcast setting
fail to be constant competitive with any constant resource augmentation. The reason for this is that an
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algorithm that focuses on requests with the smallest slack can be made to do an arbitrary amount of
“extra” work over the optimal schedule by repeatedly requesting the same page and giving the page small
slack. The algorithm will repeatedly broadcast the same page while the adversary waits and satisfies
multiple requests for this page with a single transmission. Further, we will show in Section 5 that another
greedy algorithm modeled after the well-studied algorithm Longest-Wait-First is not constant competitive
with any fixed constant resource augmentation.

We begin by developing a variant of SSF that adaptively introduces a waiting time for requests. The
algorithm uses a single real-valued parameter c < 1 to control the waiting period. The algorithm SSF-W
(SSF with waiting) is formally defined below. We note that the algorithm is non-preemptive in that a
request once scheduled is not preempted. As we mentioned earlier, for uniform sized requests, preemption
is not very helpful. At each time, the algorithm computes the delay factor of all requests in the algorithm’s
queue, and considers requests for scheduling only when their delay factor is comparable to the request
with maximum delay factor among the unsatisfied requests. Since our algorithm SSF schedules only the
requests that have waited sufficiently long, the adversary cannot delay those requests to satisfy them with
a less number of transmissions. We formalize this intuition in Lemma 3.6.

Algorithm: SSF-W

• The algorithm is non-preemptive. Let t be a time that the machine is free (either
because a request has just finished or there are no requests to process).

• Let Q(t) be the set of alive requests at time t and let

αt = max
Jp,i∈Q(t)

max
{

1,
t−ap,i

Sp,i

}
be the maximum current delay factor of requests in Q(t).

• Let
Q′(t) =

{
Jp,i ∈ Q(t)

t−ap,i

Sp,i
≥ 1

c
αt

}
be the set of requests in Q(t) with current delay factor at least 1

c αt .

• Let Jp,i be the request in Q′(t) with the smallest slack. Broadcast page p non-
preemptively.

We analyze SSF-W when it is given a (1+ ε)-speed machine. Let c > 1+2/ε be the constant which
parameterizes SSF-W. Let σ be an arbitrary sequence of requests. We let OPT denote some fixed
offline optimum schedule and let α∗ and αSSF-W denote the maximum delay factor achieved by OPT
and SSF-W, respectively. We will show that αSSF-W ≤ c2α∗. For the sake of contradiction, suppose that
SSF-W witnesses a delay factor greater than c2α∗. We consider the first time t∗ when SSF-W has some
request in its queue with delay factor c2α∗. Let the request Jq,k be a request which achieves the delay
factor c2α∗ at time t∗. Let t1 be the smallest time less than t∗ such that at each time t during the interval
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(t1, t∗] if SSF-W is forced to broadcast by request Jp,i at time t it is the case that (t−ap,i)/Sp,i > α∗ and
Sp,i ≤ Sq,k. We let I = [t1, t∗].2

We let JI denote the requests which forced SSF-W to broadcast during the interval [t1, t∗]. We now
show that any two requests in JI cannot be satisfied with a single broadcast by the optimal solution.
Intuitively, the most effective way the adversary performs better than SSF-W is to merge requests of the
same page into a single broadcast. Here we will show this is not possible for the requests in JI .

Lemma 3.6. OPT cannot merge any two requests in JI into a single broadcast.

Proof. Let Jx,i,Jx, j ∈ JI such that i < j. Let t ′ be the time that SSF-W starts satisfying request Jx,i. By
the definition of I, request Jx,i must have delay factor greater than α∗ at time fx,i. We also know that the
request Jx, j must arrive after time t ′, otherwise request Jx, j must also be satisfied at time t ′. If the optimal
solution combines these requests into a single broadcast then the request Jx,i must wait until the request
Jx, j arrives to be satisfied. However, this means that the request Jx,i must achieve a delay factor greater
than α∗ by OPT, a contradiction to the definition of α∗.

To fully exploit the advantage of speed augmentation, we need to ensure that the length of the interval
I is sufficiently long.

Lemma 3.7. |I|= |[t1, t∗]| ≥ (c2− c)Sq,kα∗.

Proof. The request Jq,k has delay factor greater than cα∗ at any time during I′ = [t ′, t∗], where t ′ =
t∗− (c2− c)Sq,kα∗. Let τ ∈ I′. The largest delay factor any request can have at time τ is less than c2α∗

by definition of t∗ being the first time SSF-W witnesses delay factor c2α∗. Hence, ατ ≤ c2α∗. Thus, the
request Jq,k is in the queue Q(τ) because cα∗ ≥ ατ/c. Moreover, this means that any request that forced
SSF-W to broadcast during I′, must have delay factor greater than α∗ and since Jq,k ∈Q(τ) for any τ ∈ I′,
the requests scheduled during I′ must have slack at most Sq,k.

We now explain a high level view of how a contradiction is found. From Lemma 3.6, we know any two
requests in JI cannot be merged by OPT. Thus if we show that OPT must finish all these requests during
an interval which is not long enough to include all of them, we will have a contradiction. More precisely,
we will show that all requests in JI must be finished during IOPT by OPT, where IOPT = [t1−2Sq,kα∗c, t∗].
It is easy to see that all these requests already have delay factor α∗ by time t∗, thus the optimal solution
must finish them by time t∗. We first lower bound the arrival times of the requests in JI .

Lemma 3.8. Any request in JI must have arrived no earlier than t1−2Sq,kα∗c.

Proof. For the sake of contradiction, suppose that some request Jp,i ∈ JI arrived at time t ′ < t1−2Sq,kα∗c.
Recall that Jp,i has a slack no bigger than Sq,k by the definition of I. Therefore at time t1−Sq,kα∗c, Jp,i

has a delay factor greater than cα∗. Thus any request scheduled during the interval I′ = [t1−Sq,kα∗c, t1]
has a delay factor greater than α∗. We observe that Jp,i is in Q(τ) for τ ∈ I′; otherwise there must be a
request with a delay factor bigger than c2α∗ at time τ and this is a contradiction to the assumption that t∗

2The algorithm SSF-W was proposed in [23] and was shown to be (2+ ε)-speed O(1/ε2)-competitive. The improved
analysis of the same algorithm that we present here first appeared in [22]. The weaker analysis in [23] was based on defining t1
(implicitly) to be aq,k + c( fq,k−aq,k).
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is the first time that SSF-W witnessed a delay factor of c2α∗. Therefore any request scheduled during I′

has a slack no bigger than Sp,i. Also we know that Sp,i ≤ Sq,k. In sum, we showed that any request done
during I′ had slack no bigger than Sq,k and a delay factor greater than α∗, which is a contradiction to the
definition of t1.

Now we are ready to prove the competitiveness of SSF-W.

Lemma 3.9. Suppose c is a constant s.t. c > 1+2/ε . If SSF-W has (1+ ε)-speed then αSSF-W ≤ c2α∗.

Proof. For the sake of contradiction, suppose that αSSF-W > c2α∗. During the interval I, the number of
broadcasts which SSF-W transmits is (1+ ε)|I|. From Lemma 3.8, all the requests processed during I
have arrived no earlier than t1−2cα∗Sq,k. We know that the optimal solution must process these requests
before time t∗ because these requests have delay factor greater than α∗ by t∗. By Lemma 3.6 the optimal
solution must make a unique broadcast for each of these requests. Thus, the optimal solution must finish
all of these requests in 2cα∗Sq,k + |I| time steps. Thus, it must hold that (1+ε)|I| ≤ 2cα∗Sq,k + |I|. Using
Lemma 3.7, this simplifies to c≤ 1+2/ε , which is a contradiction to c > 1+2/ε .

The previous lemmas proves that SSF-W is a (1+ ε)-speed O(1/ε2)-competitive algorithm for
minimizing the maximum delay factor in broadcast scheduling with uniform sized pages when c= 1+3/ε .

3.2.2 Non-uniform sized pages

Here we extend our ideas to the case where pages can have non-uniform sizes for the objective of
minimizing the maximum delay factor. For this problem, in [23] we developed a generalization of SSF-W
and showed that it is a (4+ ε)-speed O(1/ε2)-competitive algorithm. Later, we gave a (2+ ε)-speed
O(1/ε2)-competitive algorithm using a similar proof technique as used in the uniform page size setting
given in the paper [22]. In this paper we show a (1+ ε)-speed O(1/ε3)-competitive online algorithm by
improving our analyses based on the technique developed by Bansal, Krishnaswamy and Nagarajan [6]
which considers fractional schedules.

We elaborate on the model for non-uniform page sizes. Each page p has size `p, which we assume
for simplicity is an integer. Page p consists of uniform sized pieces (1, p),(2, p), . . .(`p, p). In a time
slot one piece of a unique page can be broadcast by the server. A request Jp,i is satisfied if it receives
each of the pieces of page p in sequential order; in other words, we assume that the clients do not buffer
the pieces if they are sent out of order. We assume preemption is allowed, and pieces of different pages
can be interspersed. We call this model the integral broadcast setting. We now describe a relaxed notion
of a schedule that we call a fractional schedule. In a fractional schedule the pieces of a page p are
indistinguishable and the only relevant information are the time slots during which p is transmitted. Now
a request Jp,i is satisfied once `p pieces of page p have been broadcast. That is, Jp,i is satisfied once
the server devotes `p time slots to page p after ap,i. A reduction in [6] gives a scheme that translates an
algorithm with 1 speed for the fractional broadcast setting into a (1+ ε ′)-speed integer schedule where
the flow time, fi−ai, of each request increases by a factor of at most 8/ε ′ for any fixed ε ′ > 0. Using this
technique, any schedule that is s-speed c-competitive for the fractional setting can be converted online
into a schedule that is s(1+ ε ′)-speed O(c/ε ′)-competitive for the integral setting. The algorithm used
in [6] simulates the fractional schedule. The algorithm gives priorities to pages based on the unsatisfied
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requests for the page. The priority of a request is based on the flow time of the request in the fractional
schedule; a smaller flow time corresponds to higher priority. Generally, the algorithm broadcasts the page
with the highest priority unsatisfied request. We now restrict our attention to the fractional model.

We outline the details of modifications to SSF-W. As before, at any time t, the algorithm considers
the alive requests Q(t) and a subset Q′(t) of requests that have waited sufficiently long; that is those
with current delay factor at least αt/c where αt is the maximum current delay factor for requests in Q(t).
Among all requests in Q′(t) the algorithm picks the one with the smallest slack and broadcasts a unit
amount of the page for that request; ties are broken arbitrarily. Recall that since the fractional setting
is considered, the algorithm only needs to specify the page being broadcast and not the piece of the
page. The algorithm may preempt the broadcast of p that is forced by request Jp,i if another request Jp′, j
becomes available for scheduling such that Sp′, j < Sp,i. A key issue that differentiates the algorithms
in [23, 22] from the one here is that those algorithms directly generate an integral schedule; therefore they
have to not only specify the page but also the piece of the page. In particular the algorithms in [23, 22]
could preempt the transmission of a page p for a request Jp,i and transmit p again from the start if a new
request Jp,i′ for p arrives and has much smaller slack than that of Jp,i. In the sequential model this means
that the work done for Jp,i is “wasted” and it would be satisfied at the same time as Jp,i′ . In the fractional
setting and the algorithm considered here Jp,i would continue to be satisfied as if Jp,i′ did not arrive and
prior transmission would not be wasted.

We now analyze the algorithm assuming that it has a (1+ε)-speed advantage over the optimal offline
algorithm. As before, let σ be an arbitrary sequence of requests. We let OPT denote some fixed offline
optimum schedule and let α∗ denote the optimum delay factor. Let c > 1+ 3/ε be the constant that
parameterizes SSF-W. We will show that αSSF-W ≤ c2α∗. For the sake of contradiction, suppose that
SSF-W witnesses a delay factor greater than c2α∗. We consider the first time t∗ when SSF-W has some
request in its queue with delay factor c2α∗. Let the request Jq,k be a request which achieves the delay
factor c2α∗ at time t∗. Let t1 be the smallest time less than t∗ such that at each time t during the interval
(t1, t∗] if SSF-W is forced to broadcast by request Jp,i at time t it is the case that (t−ap,i)/Sp,i > α∗ and
Sp,i ≤ Sq,k. Again, let I = [t1, t∗]. Notice that some requests that force SSF-W to broadcast during I could
have started being satisfied before t1. We now show a lemma analogous to Lemma 3.6. We say that two
requests for the same page p are satisfied simultaneously at time t if both requests are unsatisfied prior to
t, p is broadcast at time t, and both requests receive `p units of p after their arrival.

Lemma 3.10. Consider any two distinct requests Jx, j and Jx,i for some page x. If Jx, j forces SSF-W to
broadcast during I before ax,i, then OPT cannot satisfy Jx, j and Jx,i simultaneously at any time.

Proof. Let t ′ be the time that SSF-W is forced to broadcast page x by Jx, j where t ′ < ax,i. By the definition
of I, request Jx, j must have delay factor greater than α∗ at time t ′. Hence, if OPT satisfies Jx,i and Jx, j

simultaneously then Jx, j will have delay factor strictly larger than α∗ in OPT, a contradiction.

The following Lemmas 3.11 and 3.12 can be proved in the same way that Lemmas 3.7 and 3.8 are
proved. This is because the algorithm SSF-W is designed to be oblivious to page sizes. Indeed, the key
definitions in the proofs including the first time t∗ that SSF-W witnesses delay factor c2α∗, the request
Jq,k that has delay factor c2α∗ at t∗, and t ′ = t∗− (c2− c)Sq,kα∗ stay the same regardless of whether
pages have a uniform size or not. The advantage of thinking about a fractional schedule is that the work
conservation argument can be applied once we have Lemma 3.10.
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Lemma 3.11. |I|= |[t1, t∗]| ≥ (c2− c)Sq,kα∗.

Lemma 3.12. Any request which forced SSF-W to schedule a page during I must have arrived after time
t1−2Sq,kα∗c.

Using the previous lemmas we can bound the competitiveness of SSF-W.

Lemma 3.13. Suppose c is a constant s.t. c > 1+2/ε . If SSF-W has (1+ ε)-speed then αSSF-W ≤ c2α∗.

Proof. For the sake of contradiction, suppose that αSSF-W > c2α∗. During the interval I, the number of
broadcasts which SSF-W transmits is (1+ ε)|I|. From Lemma 3.12, all the requests that forced SSF-W
to broadcast during I have arrived no earlier than t1− 2cα∗Sq,k. We know that the optimal solution
must process these requests before time t∗ because these requests have delay factor greater than α∗

by t∗. By Lemma 3.10 the optimal solution cannot simultaneously satisfy two requests Jx,i and Jx, j

that forced SSF-W to broadcast during I if ax,i is later than when Jx,i forced SSF-W to broadcast. This
implies the optimal solution must broadcast at least (1+ ε)|I| units in 2cα∗Sq,k + |I| time steps. Thus, it
must hold that (1+ ε)|I| ≤ 2cα∗Sq,k + |I|. Using Lemma 3.11, this simplifies to c≤ 1+2/ε , which is a
contradiction to c > 1+2/ε .

By setting c = 1+3/ε we have the following theorem.

Theorem 3.14. The algorithm SSF-W is (1+ε)-speed O(1/ε2)-competitive for minimizing the maximum
delay factor in a fractional schedule when pages have non-uniform sizes.

Using the reduction of [6] previously discussed, we have shown the second part of Theorem 3.4.

4 Weighted response time and weighed delay factor

We show the connection of our analysis of SSF and SSF-W to the problem of minimizing the maximum
weighted response time. In the unicast setting for the problem of minimizing the maximum weighted
response time, requests do not have deadlines, but have weights. Each request Ji has a positive weight wi.
The goal is to minimize maxi wi( fi−ai). Similar to the algorithm SSF, we give the following algorithm
called BWF (Biggest-Weight-First). The algorithm BWF always schedules the request with the largest
weight.

Algorithm: BWF

• Let Q(t) be the set of alive requests at t.

• Let Ji be the request with the largest weight among requests in Q(t), ties broken by
arrival time.

• Preempt the current request and schedule Ji if it is not being processed.
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Similarly we can think of the problem of minimizing the maximum weighted delay factor. Here a
request Ji has a deadline di and a weight wi. The objective now is to minimize maxi wi max{1,( fi−ai)/Si}.
Let the modified weight of a request Ji be defined as w′i = wi/Si. The algorithm BWF above when
implemented with modified weights is the algorithm SRF (Smallest Ratio First). It is not difficult to adapt
the analysis for SSF in Section 2 to show that BWF is (1+ ε)-speed O(1/ε)-competitive for the problem
of minimizing the maximum weighted response time, and that SRF is (1+ ε)-speed O(1/ε)-competitive
for the problem of minimizing the maximum weighted delay factor.

Now consider the problem of minimizing the maximum weighted response time in broadcast schedul-
ing when pages have uniform sizes. A request Jp,i has a weight wp,i. The goal is to minimize the maximum
weighted response time maxp,i wp,i( fp,i−ap,i). We extend the algorithm BWF to get an algorithm called
BWF-W for Biggest-Wait-First with Waiting. The algorithm is parameterized by a constant c > 1. At
any time t before broadcasting a page, BWF-W determines the largest weighted wait time of any request
which has yet to be satisfied. Let this value be ρt . The algorithm then chooses to broadcast a page
corresponding to the request with largest weight amongst the requests whose current weighted wait time
at time t is larger than ρt/c.

Algorithm: BWF-W

• The algorithm is non-preemptive. Let t be a time that the machine is free (either
because a request has just finished or there are no requests to process).

• Let Q(t) be the set of alive requests at time t and let ρt = maxJp,i∈Q(t) wp,i(t−ap,i).

• Let Q′(t) = {Jp,i ∈ Q(t) | wp,i(t−ap,i)≥ 1
c ρt}.

• Let Jp,i be the request in Q′(t) with the largest weight. Broadcast page p non-
preemptively.

Although minimizing the maximum delay factor and minimizing the maximum weighted flow time
are very similar metrics, the problems are not equivalent. It may also be of interest to minimize the
maximum weighted delay factor. In this setting each request has a deadline and a weight. The goal is
to minimize maxp,i wp,i max{1,( fp,i−ap,i)/Sp,i}. For this setting we can simply alter BWF-W where
we use modified weights for requests: w′p,i for request Jp,i is defined as wp,i/Sp,i. We call the resulting
algorithm SRF-W (Smallest-Ratio-First with Waiting).

For the problems of minimizing the maximum weighted response time and weighted delay factor, the
upper bounds shown for SSF-W in this paper also hold for BWF and SRF-W, respectively. The analysis
of BWF and SRF-W is very similar to that of SSF-W. To illustrate how the proofs extend, we prove
that SRF-W is (1+ ε)-speed O(1/ε2)-competitive for minimizing the maximum weighted delay factor
in broadcast scheduling where all pages are uniform sized and there is a single machine. This is the
most general problem discussed as it is a generalization of weighted response time and the delay factor.
We analyze SRF-W when it is given a (1+ ε)-speed machine. Let c > 1+2/ε be the constant which
parameterizes SRF-W. Let σ be an arbitrary sequence of requests. We let OPT denote some fixed offline
optimum schedule and let α∗ and αSRF-W denote the maximum weighted delay factor achieved by OPT
and SRF-W, respectively. We will show that αSRF-W ≤ c2α∗. For the sake of contradiction, suppose that
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SRF-W witnesses a weighted delay factor greater than c2α∗. We consider the first time t∗ when SRF-W
has some request in its queue with weighted delay factor c2α∗. Let the request Jq,k be a request which
achieves the weighed delay factor c2α∗ at time t∗. Let t1 be the smallest time less than t∗ such that at each
time t during the interval (t1, t∗] if SRF-W is forced to broadcast by request Jp,i at time t it is the case that

wp,i( fp,i−ap,i)

Sp,i
> α

∗ and
Sp,i

wp,i
≤

Sq,k

wq,k
.

Throughout this section we let I = [t1, t∗].
We let JI denote the requests which forced SRF-W to schedule broadcasts during the interval [t1, t∗].

We now show that any two request in JI cannot be satisfied with a single broadcast by the optimal solution.

Lemma 4.1. OPT cannot merge any two requests in JI into a single broadcast.

Proof. Let Jx,i,Jx, j ∈ JI such that i < j. Let t ′ be the time that SRF-W satisfies request Jx,i. By the
definition of I, request Jx,i must have weighted delay factor greater than α∗ at this time. We also know
that the request Jx, j must arrive after time t ′, otherwise request Jx, j must also be satisfied at time t ′. If
the optimal solution combines these requests into a single broadcast then the request Jx,i must wait until
the request Jx, j arrives to be satisfied. However, this means that the request Jx,i must achieve a weighted
delay factor greater than α∗ by OPT, a contradiction.

As in the analysis of SSF-W we show that interval I is sufficiently long.

Lemma 4.2. |I|= |[t1, t∗]| ≥ (c2− c) Sq,k
wq,k

α∗.

Proof. The request Jq,k has weighted delay factor cα∗ at time

t ′ = t∗− (c2− c)
Sq,k

wq,k
α
∗ .

The largest weighted delay factor any request can have at time t ′ is less than c2α∗ by definition of t∗ being
the first time SRF-W witnesses weighted delay factor c2α∗. Hence, αt ′ ≤ c2α∗. Thus, the request Jq,k is in
Q(t ′) because cα∗ ≥ αt ′/c. Moreover, this means that any request that forced SRF-W to broadcast during
[t ′, t∗], must have weighted delay factor greater than α∗ and since Jq,k ∈ Q(t ′), the requests scheduled
during [t ′, t∗] must have a ratio of slack over weight of at most Sq,k/wq,k.

Lemma 4.3. Any request in JI must have arrived after time t1−2 Sq,k
wq,k

α∗c.

Proof. For the sake of contradiction, suppose that some request Jp,i ∈ JI arrived at time

t ′ < t1−2
Sq,k

wq,k
α
∗c .

Recall that Sp,i/wp,i ≤ Sq,k/wq,k by the definition of I. Therefore at time

t1−
Sq,k

wq,k
α
∗c ,
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Jp,i has a weighted delay factor greater than cα∗. Thus any request scheduled during the interval

I′ =
[

t1−
Sq,k

wq,k
α
∗c, t1

]
has a weighted delay factor greater than α∗. We observe that Jp,i is in Q(τ) for τ ∈ I′; otherwise there
must be a request with weighted delay factor bigger than c2α∗ at time τ and this is a contradiction to
the assumption that t∗ is the first time that SRF-W witnessed a weighted delay factor of c2α∗. Therefore
any request scheduled during I′ has a slack over weight no bigger than Sp,i/wp,i. Also we know that
Sp,i/wp,i ≤ Sq,k/wq,k. In sum, we showed that any request done during I′ had slack over weight no bigger
than Sq,k/wq,k and a delay factor greater than α∗, which is a contradiction to the definition of t1.

Now we are ready to prove the competitiveness of SRF-W.

Lemma 4.4. Suppose c is a constant such that c > 1+2/ε . If SRF-W has (1+ ε)-speed then αSRF-W ≤
c2α∗.

Proof. For the sake of contradiction, suppose that αSRF-W > c2α∗. During the interval I, the number of
broadcasts which SRF-W transmits is (1+ ε)|I|. From Lemma 4.3, all the requests processed during I
have arrived no earlier than t1−2cα∗Sq,k/wq,k. We know that the optimal solution must process these
requests before time t∗ because these requests have weighted delay factor greater than α∗ by t∗. By
Lemma 4.1 the optimal solution must make a unique broadcast for each of these requests. Thus, the
optimal solution must finish all of these requests in 2cα∗Sq,k/wq,k + |I| time steps. Thus it must hold that

(1+ ε)|I| ≤ 2cα
∗ Sq,k

wq,k
+ |I| .

Using Lemma 4.2, this simplifies to c≤ 1+2/ε , which is a contradiction to c > 1+2/ε .

5 Lower bound for a natural greedy algorithm LF

In this section, we consider a natural algorithm for minimizing the maximum delay factor which is similar
to SSF-W. This algorithm, which we will call LF for Longest Delay First, always schedules the page
which has the largest delay factor. We will consider the algorithm LF in the unicast scheduling setting
when all requests have uniform sizes. Recall that the non-uniform requests setting can be reduced to the
uniform request setting when preemption is permissible.

Algorithm: LF

• The algorithm is non-preemptive. Let t be a time that the machine is free (either
because a request has just finished or there are no requests to process).

• Let Q(t) be the set of alive requests at t.

• Let Ji be the request in Q(t) that maximizes t−ai
Si

. Schedule Ji non-preemptively.
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Notice that LF is the same as SSF-W when c = 1. However, we are able to show a negative result
on this algorithm for minimizing the maximum delay factor. This demonstrates the importance of the
trade-off between scheduling a request with smallest slack and scheduling the request with a large delay
factor. The algorithm LF was suggested and analyzed in our work [21] and is inspired by LWF [21, 29].
In [21] LF is shown to be O(k)-competitive with O(k)-speed for Lk norms of flow time and delay factor in
broadcast scheduling when pages have uniform sizes. It was suggested in [21] that LF may be competitive
for minimizing the maximum delay factor (the L∞-norm). The rest of this section will be devoted to
showing the following theorem.

Theorem 5.1. For any constant s > 1, LF is not constant competitive with s-speed for minimizing the
maximum delay factor (or weighted response time) in the unicast scheduling setting when requests have
uniform sizes.

Since LF processes the request Ji such that (t−ai)/Si is maximized, it would be helpful to formally
define the quantity. Let us define the wait ratio of Ji at time t ≥ ai as (t−ai)/Si; recall that ai and Si

are the arrival time and slack size of Ji respectively. Note that Ji’s wait ratio at time Ci is the same as
its delay factor if Ji has delay factor no smaller than 1. Further note that Ji’s delay factor is equal to
max{1,( fi−ai)/Si}. The algorithm LF schedules the request with the largest wait ratio at each time. LF
can be seen as a natural generalization of FIFO. This is because FIFO schedules the request with largest
wait time at each time. Recall that SSF-W makes requests to wait to be scheduled to help merge potential
requests in a single broadcast. The algorithm LF behaves similarly since it implicitly delays each request
until it is the request with the largest wait ratio, potentially merging many requests into a single broadcast.
Hence, this algorithm is a natural candidate for the problem of minimizing the maximum delay factor and
it does not need any parameters as the algorithm SSF-W does. We show however that this algorithm does
not have a constant competitive ratio with any constant speed.

We construct the following adversarial instance σ for any integral speed-up s > 1 and any integer
c≥ 2; the assumption of s and c being integral can be easily removed by multiplying the parameters in
the instance by a sufficiently large constant. For this problem instance we will show that LF has wait
ratio at least c, while OPT has wait ratio at most 1. In the instance σ there is a sequence of groups of
requests, Ji for 0 ≤ i ≤ k, where k is an integer to be fixed later. We now explain the requests in each
group. For simplicity of notation and readability, we will allow requests to arrive at negative times. We
can shift all of the arrival times later to make the arrival times positive. All requests have unit sizes. All
requests in each group Ji have the same arrival time

Ai =−(sc)k−i+1−
k−1−i

∑
j=0

(sc) j

and have the same slack size

Si =
s(sc)k−i

(1−1/sc)k−i .

For notational simplicity, we override the notation Si to refer to the slack size of any request in Ji, rather
than to refer to the slack size of an individual request Ji. There are s(sc)k+1 requests in group J0 and
s(sc)k−i requests in group Ji for 1≤ i≤ k.
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We now explain how LF and OPT behave for the instance σ . Sometimes, we will use Ji to refer
to requests in Ji rather than explicitly saying “requests in Ji,” since all requests in the same group are
indistinguishable to the scheduler. For the first group J0, LF keeps processing J0 upon its arrival until
completing it. On the other hand, we let OPT procrastinate J0 until OPT finishes all requests in J1 to Jk.
This does not hurt OPT, since the slack size of the requests in J0 is large relative to other requests. For
each group Ji for 1≤ i≤ k, OPT will start Ji upon its arrival and complete each request in Ji without
interruption. To the contrary, for each 1≤ i≤ k, LF will not begin scheduling Ji until finishing all requests
in Ji−1. In this way substantial delay is accumulated before LF processes Jk and such a delay is critical
for LF, since the slack of Jk is small. We refer the reader to Figure 2.

Ak Fk

OPT LF

Ak−1 Fk−1

OPT LF

Fk−2

LF

Wait Ratio

Jk

Jk−1

Jk−2

Time

Jk
Jk−1

Jk−2

Figure 2: Comparison of scheduling of group Jk, Jk−1, and Jk−2 by LF and OPT.

We now formally prove that LF has the maximum wait ratio c, while OPT has wait ratio at most 1
for the given problem instance σ . Let

Fi = Ai +(sc)k−i+1 =−
k−1−i

∑
j=0

(sc) j , 0≤ i≤ k .

Let ri(t) denote the wait ratio of any request in Ji at time t. We fix k to be an integer such that

3sc
(

1− 1
sc

)k

c≤ 1 .

Lemma 5.2. LF, given speed s, completely schedules J0 during [A0,F0] and Ji during [Fi−1,Fi], 1≤ i≤ k.
Further, the maximum wait ratio of any request in Jk under LF’s schedule is c.

Proof. Observe that the length of the time interval [A0,F0] is exactly the amount of time LF with speed s
needs to completely process J0, since s|[A0,F0]|= s(sc)k+1 = |J0|. Similarly we observe that the length of
the time interval [Fi−1,Fi],1≤ i≤ k is exactly the amount of time LF with speed s requires to completely
process Ji, since s|[Fi−1,Fi]|= s(sc)k−i = |Ji|.
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First we show that J0 is finished during [A0,F0] by LF. Note that before time F0, no request in J j,
j ≥ 2 arrives, since

F0 =−
k−1

∑
j=0

(sc) j ≤−(sc)k−1−
k−3

∑
j=0

(sc) j = A2

and all requests in J j, j ≥ 2 arrive no earlier than time A2. We will show that J0 has the same wait ratio
as J1 at time F0. Then since J0 has a slack greater than J1, at any time t during [A0,F0], r0(t)> r1(t) and
hence LF will work on J0 over J1. Indeed, the wait ratio of J0 at time F0 is

r0(F0) =
F0−A0

S0
=

(sc)k+1

s(sc)k

(1−1/sc)k

= c(1−1/sc)k ,

which is equal to the wait ratio of J1 at time F0,

r1(F0) =
F0−A1

S1
=

(sc)k− (sc)k−1

s(sc)k−1

(1−1/sc)k−1

= c(1−1/sc)k .

To complete the proof, we show that Ji, i≥ 1 is finished during [Fi−1,Fi] by LF. This proof is very
similar to the above. Note that no request in J j, j ≥ i+2 arrives before time Fi, since

Fi =−
k−1−i

∑
j=0

(sc) j ≤−(sc)k−i−1−
k−3−i

∑
j=0

(sc) j = Ai+2

and all requests in J j, j ≤ i+2 arrive no earlier than time Ai+2. We will show that Ji has the same wait
ratio as Ji+1 at time Fi. Then since the slack of Ji+1 is smaller than Ji, at any time t during [Fi−1,Fi], Ji

will have wait ratio no smaller than Ji+1 and hence LF will work on Ji over Ji+1. Indeed, the wait ratio of
Ji at time Fi is

ri(Fi) =
Fi−Ai

Si
=

(sc)k−i+1

s(sc)k−i

(1−1/sc)k−i

= c(1−1/sc)k−i ,

which is equal to the current delay factor of Ji+1 at time Fi,

ri+1(Fi) =
Fi−Ai+1

Si+1
=

(sc)k−i− (sc)k−i−1

s(sc)k−1−i

(1−1/sc)k−i−1

= c(1−1/sc)k−i .

Hence LF has wait ratio at least c for a certain request in Jk.

In the following lemma, we show that there exists a feasible scheduling by OPT that has wait ratio at
most 1, which together with Lemma 5.2 will complete the proof of Theorem 5.1.

Lemma 5.3. Consider a schedule which processes all requests in J0 during [Fk,Fk+ |J0|] and all requests
in Ji during [Ai,Ai+ |Ji|] for 1≤ i≤ k with speed 1. This schedule is feasible and, moreover, the maximum
wait ratio of any request under this schedule is at most one.
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Proof. We first observe that the time intervals [Fk,Fk + |J0|] and [Ai,Ai+ |Ji|] for 1≤ i≤ k do not overlap,
since for i≥ 1,

Ai+1− (Ai + |Ji|) = (sc)k+1−i +(sc)k−1−i− s(sc)k−i− (sc)k−i ≥ (sc)k−i(sc− s−1)> 0 ,

and Fk− (Ak + |Jk|) = sc− s > 0. Further, all requests in J0 can be completed during [Fk,Fk + |J0|] by a
scheduler with speed 1. Likewise, this shows that all requests in Ji can be completed during [Ai,Ai + |Ji|]
by a scheduler with speed 1. Hence this is a feasible schedule for a 1 speed algorithm.

It now remains to upper bound the maximum wait ratio of any request under the suggested schedule.
Consider any request in Ji, i≥ 1. The maximum wait ratio of Ji under the schedule is

Ai + |Ji|−Ai

Si
=

s(sc)k−i

s(sc)k−i

(1−1/sc)k−i

= (1−1/sc)k−i < 1 .

The maximum wait ratio of any request in J0 is

r0(Fk + |J0|) =
Fk + |J0|−A0

S0
=

(s+1)(sc)k+1 +∑
k−1
j=0(sc) j

s(sc)k

(1−1/sc)k

≤ 3s(sc)k+1

s(sc)k

(1−1/sc)k

= 3sc(1−1/sc)k ≤ 1 .

The last inequality holds since k was chosen to satisfy the inequality.

6 Conclusions

We considered online scheduling to minimize maximum (weighted) response time and to minimize
maximum (weighted) delay factor. Delay factor and the weighted response time metrics have not been
previously considered. We developed scalable algorithms for these metrics in both the unicast and
broadcast scheduling models. Our algorithms demonstrate an interesting trade off on whether to prioritize
requests with larger weight or those that have waited longer in the system. Understanding this trade
off has led to the first online scalable algorithm for minimizing average response time in broadcast
scheduling [34] which has been an open problem for several years.

We close with the following open problems. Our algorithm for the maximum delay factor with
uniform sized pages uses a parameter that explicitly depends on the speed given to the algorithm. Is there
an algorithm that is scalable without needing this information? FIFO is 2-competitive for minimizing
maximum response time in broadcast scheduling. In the offline setting can the 2-approximation implied
by FIFO be improved? For the more general problem of minimizing maximum delay factor, no non-trivial
offline approximation is known that does not use resource augmentation.
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