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Abstract: We introduce revenue submodularity, the property that market expansion has
diminishing returns on an auction’s expected revenue. We prove that revenue submodularity
is generally possible only in matroid markets, that Bayesian-optimal auctions are always
revenue-submodular in such markets, and that the VCG mechanism is revenue-submodular
in matroid markets with i.i.d. bidders and “sufficient competition.” We also give two
applications of revenue submodularity: good approximation algorithms for novel market
expansion problems, and approximate revenue guarantees for the VCG mechanism with i.i.d.
bidders.
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1 Introduction

Auctions are often designed for a specific environment. But environments are not always predictable
and static: initial expectations might be based on wrong information; bidders might withdraw or bring
friends; and the seller can potentially influence the environment directly, for example by attracting new
bidders to the market. For these reasons, the way the revenue of an auction changes with the underlying
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environment can be as important as the revenue it achieves in a fixed environment. For example, the
VCG mechanism’s lack of revenue monotonicity—the fact that adding new bidders can decrease its
revenue—has been widely cited as a “deal breaker” for its possible use as a combinatorial auction (see,
e. g., Milgrom [20, §2.5.2] and Rastegari et al. [25]).

This paper introduces revenue submodularity—essentially, the property that market expansion has
diminishing returns on an auction’s expected revenue. For example, in a multi-unit auction with bidders
that have unit demand and independent and identically distributed (i.i.d.) valuations, revenue submod-
ularity means that the auction’s expected revenue is a concave function of the number of bidders. In
general, an auction is deemed revenue submodular in an environment with a set U of potential bidders if,
for every subset S⊂U and bidder i /∈ S, the increase in the auction’s revenue from supplementing the set
S of bidders by i is at most that of supplementing a set T ⊆ S of bidders by the same additional bidder i.

Natural auctions are not necessarily revenue submodular, even in the simple setting of a multi-unit
auction. Figure 1 shows the expected revenue of the Vickrey auction with a reserve price in a 10-unit
auction, as a function of the number n of unit-demand bidders with valuations drawn i.i.d. from the
uniform distribution on [0,1].1 The three curves correspond to the reserve prices r = .2, .5, .7. The curve
for r = .5—the revenue-maximizing reserve price for this distribution—is noticeably concave. The curve
for the high reserve is essentially linear in the range of the plot. The curve for the low reserve r = .2,
however, is evidently non-concave, with a “kink” between 10 and 15 bidders. The first goal of this work
is to understand this phenomenon, by identifying necessary and sufficient conditions—on environments,
valuation distributions, and auctions—such that revenue submodularity holds.

But why is revenue submodularity an interesting property? We provide two applications in this paper
(and anticipate more). The first application is inspired by a famous result of Bulow and Klemperer [5],
which states that in multi-unit auctions with i.i.d. bidders, market expansion increases the Vickrey
auction’s revenue at least as much as switching to an optimal selling procedure. This idea suggests
the market expansion problem, which in its simplest form asks: which set of at most k bidders should
be recruited to increase a given auction’s revenue as much as possible? Revenue submodularity is the
key to achieving a computationally efficient approximation algorithm for this problem. As a second
application, we show that revenue submodularity, in conjunction with additional conditions, leads to
strong quantitative revenue guarantees for the economically efficient VCG mechanism

1.1 Brief summary of results

1.1.1 Revenue submodularity

We first identify the largest class of single-parameter domains for which general revenue submodularity
results are possible: matroid markets, in which the feasible subsets of simultaneously winning bidders
form a matroid (see Section 2 for definitions). Fortunately, matroid markets include several interesting
examples, including multi-unit auctions and certain matching markets.

We then prove a number of positive results (Section 3). First is a sweeping result for (Bayesian)-
optimal auctions: in every matroid market with independent (not necessarily identical) valuation dis-
tributions, the revenue-maximizing auction is revenue-submodular. The fact that the “r = .5” curve

1In this auction, the winners are the highest 10 bidders among those that meet the reserve, and all winners pay the larger of
the reserve and the 11th highest bid.
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Figure 1: Expected revenue of a 10-unit Vickrey auction, with bidder valuations drawn i.i.d. from the
uniform distribution on [0,1], as a function of the number of bidders and the reserve price. When the
reserve price is .2, the expected revenue is not concave.

in Figure 1 is concave is a very special case of this result. The VCG mechanism, on the other hand,
enjoys revenue submodularity only under additional conditions. For example, in a k-unit auction with
n unit-demand bidders, the Vickrey auction earns zero revenue when n≤ k and positive revenue when
n≥ k+1, a clear violation of revenue submodularity. We identify a natural sufficient condition under
which the VCG mechanism is revenue-submodular with i.i.d. bidders, which is a matroid rank condition
stating that there is “sufficient competition” in the market. For example, in multi-unit auctions, sufficient
competition requires that the number of bidders be at least the number of items. Finally, we prove that
revenue submodularity is not a monotone property of the reserve prices used: reserve prices higher than
those in an optimal mechanism preserve submodularity (cf. the “r = .7” curve in Figure 1), but reserve
prices strictly between those in the VCG mechanism (namely, zero) and those in an optimal mechanism
always have the potential to destroy revenue submodularity, even when there is sufficient competition in
the market (cf. the “r = .2” curve in Figure 1).

We obtain reasonably simple and direct proofs of these results by appropriately applying two elegant
and powerful techniques: Myerson’s characterization of expected auction revenue in terms of the expected
“virtual surplus” of the auction’s allocation; and the submodularity that arises from optimizing a weight
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function over the independent sets of a matroid.

We also prove in passing that matroid markets are precisely the downward-closed single-parameter
domains for which the VCG mechanism is always revenue monotone, meaning that additional bidders
can only increase the mechanism’s revenue (Section 4).

1.1.2 Application: Market expansion

Our first application of revenue submodularity is algorithmic and concerns the following problem. Under
the constraint that a certain auction mechanism, such as the VCG mechanism, will be deployed, how
should the seller recruit new bidders to maximize the auction’s revenue? This problem is clearly faced
by sellers on eBay, by companies (like search engines) that run ad actions, and by governments that use
spectrum auctions.

We focus on the following version of the market expansion problem. The input is a matroid market
with a set of potential bidders, a subset of initial bidders, an auction (defined for all induced submarkets),
and an expansion budget k. The goal is to recruit a set of at most k new bidders to maximize the expected
revenue of the auction on the submarket induced by the original bidders together with the new recruits.
The budget models constraints on the seller’s available marketing resources for recruiting additional
bidders. This problem is trivial with i.i.d. bidders in a multi-unit auction, but we prove that it is hard in
more general settings. Our main result for this application is that “greedy market expansion”—repeatedly
adding the new bidder that (myopically) increases the expected revenue of the auction as much as
possible—is a constant-factor approximation algorithm provided the given auction is revenue-submodular
over all sets containing the initial bidders. This result also admits several extensions, for example to the
variant in which the budget on new recruits is replaced by bidder recruiting costs.

1.1.3 Application: VCG revenue is approximately optimal

The VCG mechanism maximizes welfare and does not require knowledge about bidders’ valuation
distributions. However, its payments are designed to enforce strategyproofness and generate revenue only
as a side effect. Are there general conditions under which the VCG mechanism is guaranteed to have
good revenue?

Our second application of revenue submodularity is to approximate revenue-maximization guarantees
for the VCG mechanism. Specifically, in a matroid market with i.i.d. bidder valuations and “modest
competition”—which we formalize using matroid connectivity—the VCG mechanism always obtains
a constant fraction of the revenue of an optimal auction. Moreover, the approximation guarantee tends
rapidly to 1 as the degree of competition increases. We also extend these guarantees to a standard model
of pay-per-click sponsored search auctions. These results suggest an explanation for the persistent use
of economically efficient auctions for revenue-maximization problems: the cost (i. e., revenue loss) of
running an efficient auction is typically small and outweighed by the benefits (i. e., economic efficiency
and relative simplicity), even for a revenue-maximizing seller.
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1.2 Related work

To the best of our knowledge, we are the first to study revenue submodularity in auctions and to consider
market expansion optimization problems. A few other works study revenue guarantees for the VCG
mechanism, in simpler settings than ours. Bulow and Klemperer [5] give a sufficient condition on the
number of additional bidders required to exceed the (original) optimal revenue in a multi-unit auction (see
also Kirkegaard [17] for a simple proof of this result). But they do not compare the Vickrey and optimal
revenue in a fixed environment. Similar results for more general settings appear in [15]. Neeman [22]
studies the convergence of revenue to welfare as the number of bidders grows in a single-item auction
with i.i.d. bidders from a bounded distribution. Lambert and Shoham [19] study which sponsored
search auctions extract the full surplus in the limit, as the number of bidders goes to infinity. Edelman
and Schwarz [9] empirically compare the revenue of the VCG and revenue-maximizing auctions in a
sponsored search context.

A few other papers study matroids in auction settings but are largely unrelated to our work. Talwar [26]
and Karlin et al. [16] study frugality and Cary et al. [6] study profit-maximization in procurement settings.
Our proof that matroid markets are precisely those in which the VCG mechanism is always revenue
monotone (Theorem 4.1) shares some ideas with arguments in [16, 26] (see also the notes by Hartline [13]),
but the techniques in [6, 16, 26] do not seem useful for studying revenue submodularity. Our Theorem 4.1
is also similar in spirit to a result in Ausubel and Milgrom [2, Theorem 13] for combintorial auctions,
which states that when goods are subsitutes, the revenue of the VCG mechanism is non-decreasing in the
bidder set. Bikhchandani et al. [4] design economically efficient ascending auctions for selling bases of a
matroid, but are unconcerned with revenue. Finally, in online auctions, where bidders arrive over time,
matroid domains are studied in Babaioff et al. [3] and Constantin et al. [7].

2 Preliminaries

This section reviews some standard facts from combinatorial optimization and auction theory that are
needed to state and prove our results. Section 2.1 introduces matroids and gives several examples.
Section 2.2 states the key facts about matroids that are required in our proofs. Section 2.3 reviews optimal
auction design in Bayesian single-parameter environments, as studied in Myerson [21]. We encourage
the reader familiar with matroids and auctions to skip ahead to Example 2.12 at the end of the section.

2.1 Matroids

A set system consists of a ground set U and a collection I⊆ 2U of subsets. We will only be interested in
the case where U is finite and both I and U are non-empty. A matroid is a set system (U,I) that satisfies
two conditions. First, it is downward closed, meaning that if S belongs to I, then so do all subsets of S.
The second condition is the exchange property, which asserts that whenever T,S ∈ I with |T |< |S|, there
is some x ∈ S \T such that T ∪{x} ∈ I. Thus T can be extended to a larger set in I by some element
of S \T . In a matroid context, the sets of I are called independent, and the maximal such sets are the
bases of the matroid. The matroid properties easily imply that all bases have equal cardinality. This
common size is the rank of the matroid.
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Matroids model a number of natural auction settings; we mention a few below. In all cases, the
ground set of the matroid represents the set of bidders in the auction, and the independent sets of the
matroid represent the subsets of bidders that can simultaneously win in the auction.

Example 2.1 (Uniform Matroids). In a uniform matroid, the independent sets are the subsets of size at
most k, where k is some nonnegative integer. Both matroid properties obviously hold. The bases of a
uniform matroid are the subsets of size exactly k; obviously, k is also the rank of the matroid.

A uniform matroid models an auction with k identical items and unit-demand bidders.

Example 2.2 (Transversal Matroids). A transversal matroid is defined via an undirected bipartite graph
(V1,V2,E); its ground set is V1 and a subset S ⊆ V1 is independent if and only if the vertices of S can
be simultaneously matched to (distinct) vertices of V2. The exchange property can be proved using an
augmenting path argument. The rank of a transversal matroid equals the cardinality of a maximum
matching in the corresponding bipartite graph.

A transversal matroid represents a matching market, where V1 is a set of bidders, V2 is a set of items,
and the edges E specify which items each bidder is interested in. (Here, each bidder has a common
value for the items in which it is interested.) In such a market, items represent “resources” or “services,”
and each “served” bidder must be matched to a unique resource from the bidder-specific set of viable
resources.

Example 2.3 (Graphic Matroids). A graphic matroid is defined by an undirected graph G = (V,E); the
ground set is E and the independent sets are the acyclic subsets of E. Such a set system is obviously
downward closed, and the exchange property can be proved by comparing partitions into connected
components. If G is a connected graph, then the bases of the corresponding graphic matroid are the
spanning trees of G, and the matroid rank is |V |−1. In general, the bases correspond to the spanning
forests of G, and the rank of the matroid is |V | − c(G) where c(G) denotes number of connected
components of G.

Example 2.4 (Linear Matroids). A linear matroid is defined by a set U of vectors over some field; the
independent sets of the matroid are the linearly-independent subsets of U . Downward closure and the
exchange property follow from basic linear algebra. The bases of a linear matroid correspond to the bases
of the vector space spanned by U . When U is a set of vectors over the two-element field, we call the
resulting linear matroid a binary matroid.

We require a standard matroid operation to model the addition (or removal) of new bidders in a
market. Given a matroid M = (U,I) and a subset S⊆U , the restriction of M to S is the set system (S,IS),
where IS = {T ⊆ S : T ∈ I} is the subsets of I that lie in S. Every restriction of a matroid to a non-empty
set is again a matroid. We sometimes call this a submatroid of the original matroid or say that S induces
the matroid (S,IS).

2.2 Submodularity and weighted rank

Suppose we endow every element e of a matroid M with a real-valued weight we. The weight of a set is
then the sum of the weights of its constituent elements. The weighted rank of M under w is defined as the
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maximum weight of one of its independent sets. For a nonnegative weight function the weighted rank is
determined by a basis of the matroid; with general weights, non-maximal independent sets can determine
the weighted rank.

The weighted rank of a matroid can be computed by the following algorithm which greedily constructs
an independent set via a single pass over the elements: (i) sort the elements e1, . . . ,en from highest to
lowest weight (breaking ties arbitrarily) and initialize S = /0; (ii) for each i = 1,2, . . . ,n in turn, if ei has
nonnegative weight and S∪{ei} ∈ I, then add ei to S. For graphic matroids, this algorithm is simply
Kruskal’s algorithm (e. g., [18, §2.1]). The correctness of this algorithm for general matroids can be
proved using the exchange property. Similarly, if the clause “if ei has nonnegative weight” is omitted,
then the corresponding greedy algorithm computes a maximum-weight basis of the matroid.

Submodularity is a set-theoretic analog of concavity, and it is central to this work. We repeat here the
formal definition.

Definition 2.5 (Submodular Function). A function f : 2U →R defined on all subsets of a finite non-empty
set U is submodular if

f (S∪{i})− f (S)≤ f (T ∪{i})− f (T )

for every T ⊆ S⊂U and i /∈ S.

Our results on revenue submodularity rely on the submodularity of the weighted rank function on the
submatroids of a given matroid. For the uniform weight function, this fact is well known.

Proposition 2.6 ([30, Theorem 1.2.3]). For a matroid M = (U,I), let f (S) denote the rank of M restricted
to S. Then f is a submodular function.

Proof. Fix sets T,S such that T ⊆ S⊆U , and an element i ∈U \S; we show that

f (S∪{i})− f (S)≤ f (T ∪{i})− f (T ) .

The left-hand side is either 0 or 1, and we can assume that it is 1. Let BT be a basis in the restriction
of M to T , and use the exchange property to extend BT to a basis BS ⊇ BT in the restriction of M to S.
Since f (S∪{i}) = f (S)+1, the exchange property implies that BS∪{i} is a basis in the restriction of M
to S∪{i}. Downward closure implies that BT ∪{i} is an independent set of M restricted to T ∪{i}, so
f (T ∪{i}) = f (T )+1, as needed.

The generalization to weighted rank follows easily.

Corollary 2.7 (Weighted Rank Is Submodular). For a matroid M = (U,I) and weight function w on U,
let f (S) denote the weighted rank of M restricted to S. Then f is a submodular function.

Proof. First, Proposition 2.6 extends trivially to 0-1 weight functions, since the corresponding weighted
rank function of M is the same as the (unweighted) rank function of the restriction of M to the positive-
weight elements of U . For a general weight function w, restrict M to the positive-weight elements and
label these elements {1,2, . . . ,n} so that w1 ≥ w2 ≥ ·· · ≥ wn > 0. For i = 1,2, . . . ,n, let w(i) denote
the weight vector in which the elements {1,2, . . . , i} have weight 1 and all other elements have zero
weight. Let fi denote the corresponding (submodular) weighted rank function. Since a nonnegative
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linear combination of submodular functions is again submodular, ∑
n
i=1(wi−wi+1) · fi is submodular. (By

convention, wn+1 = 0.) Since the output of the greedy algorithm for maximizing weighted rank depends
only on the ordering of the elements’ weights (and ties are irrelevant), the independent set that maximizes
the weighted rank w.r.t. the weight function w also simultaneously maximizes the weighted rank w.r.t.
each of w(1), . . . ,w(n). Thus f = ∑

n
i=1(wi−wi+1) · fi, completing the proof.

The following converse to Proposition 2.6 also holds.

Proposition 2.8 ([30, Theorem 1.2.3]). Let M = (U,I) be a set system and f (S) the largest size of a set
of I that is contained in S. If f is submodular, then M is a matroid.

There are numerous other characterizations of matroids. We conclude with one useful in the proof of
Theorem 4.1.

Proposition 2.9 ([24, Corollary 2.1.5]). A downward-closed set system (U,I) with I 6= /0 is a matroid if
and only if for every pair A,B of maximal sets in I and y∈B, there is some x∈A such that A\{x}∪{y} ∈ I.

2.3 Optimal auction design

Our auction model is standard (e. g., [21]). There is a population U of bidders, and a set of feasible
outcomes, each indicating the “winning” and “losing” bidders in the outcome. For example, in a k-unit
auction, there is a feasible outcome for each subset of at most k bidders; in a matching market, feasible
outcomes correspond to matchings between bidders and desired goods. The applications we have in mind
are downward closed; as noted above, this means that for every feasible set of winners, every subset of
this set is also feasible.

A bidder i has value 0 for losing, and a valuation vi for winning that is a priori unknown to the
auctioneer. Each bidder bids to maximize its payoff vixi− pi, where xi is 1 if it wins and 0 otherwise,
and pi is its payment to the auctioneer (assumed 0 if xi = 0). A mechanism is a specification of an
allocation rule (the xi) and a payment rule (the pi), which together select who wins and who pays what in
each bid profile.

The efficiency and revenue of a mechanism outcome for bidders with valuations v are defined as ∑i vixi

and ∑i pi, respectively. We usually study the expected revenue of a mechanism, under the assumption
that the bidders’ valuations are independently distributed according to known distributions F1, . . . ,Fn

with strictly positive density functions f1, . . . , fn. We focus on strategyproof mechanisms, in which each
bidder is guaranteed to maximize its payoff by revealing its true private valuation to the mechanism,
irrespective of the valuations and behavior of the other bidders. Because of this, we use the terms bids
and valuations interchangeably.

In single-parameter problems like those studied in this paper, strategyproof mechanisms are relatively
well understood. An allocation rule can be extended via a (essentially unique) payment rule to a
strategyproof mechanism if and only if the rule is monotone, meaning that a winner who increases its
bid always continues to win (keeping other bids fixed) [21]. For example, in a single-item auction, the
“highest bidder wins” rule is monotone; the “second-highest bidder wins” rule is not.

Example 2.10 (The VCG Mechanism). The VCG mechanism is defined by the allocation rule that always
picks the feasible set with the largest sum of valuations. It is easy to see that this allocation rule is

THEORY OF COMPUTING, Volume 8 (2012), pp. 95–119 102

http://dx.doi.org/10.4086/toc


REVENUE SUBMODULARITY

monotone and can therefore be extended to a strategyproof mechanism via suitable payments. These
payments are: each winner is charged a price equal to the smallest bid at which it would continue to
win (keeping other bids fixed). For a k-unit auction with unit-demand bidders, the VCG mechanism
specializes to the Vickrey auction, with all winners paying the (k+1)th highest bid.

Remark 2.11 (The Clarke Pivot Rule). The payments of the general VCG mechanism are defined only
up to a bid-independent “pivot term” (see, e. g., [20]). In this paper, we study only the Clarke pivot rule
which normalizes the payment of every losing bidder to zero.

The virtual valuation corresponding to a distribution Fi and a valuation vi is defined as

ϕi(vi) = vi−
1−Fi(vi)

fi(vi)
. (2.1)

A distribution is regular if the corresponding virtual valuation function is increasing over the distribution’s
support. We note that a virtual valuation can be negative; for example, if F(v) = v on [0,1], then
ϕ(v) = 2v−1.

The importance of virtual valuations is illustrated by the following lemma of Myerson [21, Lemma
3.1]: for every mechanism, its expected revenue (over draws from the Fi) equals the expected virtual
value of its allocation:

E[revenue] =
∫(

∑
i

ϕi(vi)xi(v1, . . . ,vn)
)

f1(v1) · · · fn(vn)dv1 · · ·dvn . (2.2)

Thus the revenue-maximizing strategyproof mechanism maximizes the expected total virtual value (2.2)
subject to monotonicity of the allocation rule [21].

With regular distributions, the optimal auction simply maximizes the virtual value pointwise (i. e.,
separately for each valuation profile). Since the virtual valuation functions corresponding to regular
distributions are increasing, this defines a monotone allocation rule and yields a strategyproof mechanism
once suitable payments are defined.

Finally, we discuss non-regular distributions; this requires some technical concepts, but we require
them only for the proof of Theorem 3.1. With such distributions, the allocation rule above is not monotone
and hence cannot be extended to a strategyproof mechanism by any payment rule. To overcome this
obstacle, Myerson [21] defined a nondecreasing function called an ironed virtual valuation. This function
is meant to be a monotone proxy for the virtual valuation function. Maximizing the ironed virtual value of
the allocation and breaking ties in a valuation-independent way turns out to be equivalent to maximizing
the virtual value of the allocation (2.2) subject to monotonicity, and therefore results in an optimal
auction [21].

Formally, the (nondecreasing) ironed virtual valuation ϕ corresponding to a virtual valuation ϕ is
defined by the following procedure.

1. For q ∈ [0,1], define h(q) = ϕ(F−1(q)).

2. Define H(q) =
∫ q

0 h(r)dr.

3. Define G as the convex hull of H – the largest convex function bounded above by H for all q∈ [0,1].
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4. Define g(q) as the derivative of G(q), where defined, and extend to all of [0,1] by right-continuity.

5. Finally, ϕ(z) = g(F(z)).

For further details and illustrations, see Myerson [21] or the exposition in Hartline [14].
To summarize, in a single-parameter environment with independent valuation distributions, maximiz-

ing the expected auction revenue reduces to always selecting the feasible set with maximum total ironed
virtual value.

Example 2.12 (Matroid Markets with i.i.d. Bidders). Consider a set U of bidders and suppose that
the feasible sets of winners form a matroid. Suppose further that bidders’ valuations are i.i.d. draws
from a regular distribution F with (increasing) virtual valuation function ϕ . In this case, the VCG and
revenue-maximizing mechanisms are close cousins. The VCG mechanism maximizes the total value of
the winners (Example 2.10). In a matroid market, this allocation rule can be implemented by ordering
bidders by valuation and running the greedy algorithm from Section 2.2. As discussed above, the optimal
mechanism maximizes the total virtual value of the winners. In a matroid market, this corresponds to
ordering bidders by virtual valuation, running the greedy algorithm, and halting once the negative virtual
valuations are reached. Since bidders’ valuations are i.i.d. draws from a regular distribution, the orderings
by valuation and by virtual valuation coincide. Thus, the optimal mechanism is nothing more than the
VCG mechanism supplemented with the optimal reserve price r∗ = ϕ−1(0).

3 Revenue submodularity

3.1 Optimal auctions

We first observe that revenue submodularity can be crisply characterized for revenue-maximizing auctions.
This characterization also establishes matroid domains as the largest set of domains for which general
revenue-submodularity results are possible.

We study the following property of a given domain or market (i. e., a set of bidders and feasible
subsets of winners):

(*) for every set of independent valuation distributions for the bidders, the corresponding optimal
auction is revenue-submodular.

Theorem 3.1 (Submodularity of Optimal Auctions). A market has property (*) if and only if it is a
matroid market.

Proof. For the “if” direction, fix a matroid market with a set U of bidders and independent distribu-
tions F1, . . . ,Fn for the bidders’ valuations. Condition on the valuations of all bidders in U . For S⊆U , let
ϕ(S) denote the maximum sum of ironed virtual valuations (Section 2.3) possessed by an independent set
contained in S; by Myerson’s Theorem [21], the optimal auction for the market induced by S chooses
such a set for this valuation profile. Since the market on U is a matroid market, and moreover ϕ(S) is the
weighted rank function of the matroid when players’ weights are set to their ironed virtual valuations,
Corollary 2.7 implies that ϕ(S) is submodular on U . Taking expectations, the expected sum of the
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winners’ ironed virtual valuations is submodular on U . (A convex combination of submodular functions
is again submodular.) Applying (2.2) now shows that the optimal auction is revenue-submodular.

For the converse, consider a domain for which the optimal auction is always revenue-submodular,
and in particular has this property when every bidder’s valuation is deterministically 1. In this case, the
revenue of the optimal auction in a submarket S⊆U is the largest size of a feasible set contained in S. In
other words, the auction revenue corresponds to the rank function of the set system. This rank function is
submodular only when the set system comprises the independent sets of a matroid (Proposition 2.8).

3.2 VCG without a reserve price

The plot is thicker for other mechanisms, even in the very special case of multi-unit auctions. (Recall
Figure 1.) For example, consider a k-unit auction with n unit-demand bidders. For all n≤ k, the Vickrey
auction earns zero revenue. There is a sudden jump to positive revenue when n = k+1, a clear violation
of revenue submodularity. With non-i.i.d. bidders (e. g., many “small” bidders and few “large” bidders),
the same problem can arise even when the total number of bidders is much larger than the number of
goods. The best we can hope for with the VCG mechanism is that revenue submodularity kicks in once
there is “sufficient competition.” Precisely, we consider i.i.d. bidders and prove submodularity over the
full-rank sets—sets that contain a basis of the full matroid market M. In a k-unit auction, this corresponds
to bidder sets of cardinality at least k.

Theorem 3.2 (Submodularity of VCG). Fix a matroid market M with a set U of bidders and valuations
drawn i.i.d. from a regular distribution F. The expected revenue of the VCG mechanism for induced
matroid markets MS is submodular on the set of full-rank sets S⊆U.

Theorem 3.2 is false, even in a single-item auction, if the full-rank assumption is dropped (as we
have seen), if the i.i.d. assumption is dropped (Example 3.3), or if the regularity condition is dropped
(Example 3.4).

Proof. Condition on the bidders’ valuations. Let C be large enough that the “shifted virtual valuation”
γ(vi) := ϕ(vi)+C is nonnegative for every bidder i. Since the valuations are i.i.d. draws from a regular
distribution, the (common) virtual valuation function ϕ is increasing, and thus γ is a nonnegative weight
vector that orders the bidders by valuation.

In a matroid market, all nonnegative weight functions that order the bidders in the same way are
maximized by a common (maximal) independent set; this follows from the optimality of the greedy
algorithm, as in the proof of Corollary 2.7. Thus while the VCG mechanism explicitly maximizes the
sum of the valuations of the winners, it inadvertently maximizes the sum of their shifted virtual valuations
as well. Letting γ(S) denote the latter maximum in the submarket induced by S, this observation and
Corollary 2.7 establish the submodularity of γ over all subsets of U .

Define ϕ(S) as the total virtual value of the VCG mechanism’s allocation in the submarket S. The
submodularity of γ translates to submodularity of ϕ on full-rank sets. To see this, take two full-rank sets
A and B with A⊆ B, and a bidder i /∈ B. By submodularity of γ ,

γ(A∪{i})− γ(A)≥ γ(B∪{i})− γ(B) .
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Now, on full-rank sets S, ϕ(S) = γ(S)− r(M) ·C, where r(M) denotes the rank of the full matroid M.
Thus

ϕ(A∪{i})−ϕ(A)≥ ϕ(B∪{i})−ϕ(B) ,

as claimed.
Finally, taking expectations over the bidders’ valuations and applying (2.2) proves the theorem.

Example 3.3 (Necessity of i.i.d. Distributions). Consider a single-item auction where the bidding
population consists of two types of bidders, one with value drawn uniformly from [0,ε] (small bidders)
for small ε and another with value drawn uniformly from [0,1] (big bidders). Suppose that the market
consists initially of small bidders. Consider the revenue of the Vickrey auction. Adding the first big
bidder causes an increase in expected revenue of at most ε . Adding a second big bidder increases the
expected revenue by at least 1/3− ε . Thus non-submodularity occurs even on full-rank sets.

Example 3.4 (Necessity of Regular Distributions). Consider a single-item auction where the valuation of
each bidder is 1 with probability p, and 0 with probability 1− p. (A continuous perturbed version of this
distribution also works.) The revenue of the Vickrey auction is 0 with one bidder. Adding the second
bidder increases the revenue to p2. Adding the third bidder increases the revenue to p3 +3p2(1− p). For
small p, p3 +3p2(1− p)− p2 > p2−0 and non-submodularity results.

3.3 VCG with an arbitrary reserve price

Consider the VCG mechanism with some reserve price r. Thus far, we have identified conditions for
revenue submodularity with zero reserve and with the Myerson reserve r∗, which in matroid markets
correspond to the VCG and optimal mechanisms, respectively (Example 2.12). What if a different reserve
price is used, either by choice or because of inaccurate statistics? Perhaps surprisingly, there is a big
difference between overestimating the optimal reserve price (which never affects submodularity) and
underestimating it (which can destroy submodularity, even on full-rank sets).

Theorem 3.5 (VCG with Incorrect Reserve Prices).

(a) For every regular distribution F with optimal reserve price r∗ = ϕ−1(0), every matroid market
with a set U of bidders with valuations drawn i.i.d. from F, and every r ≥ r∗, the expected revenue
of the VCG mechanism with reserve price r is submodular on U.

(b) For every ε ∈ (0,1), there is a regular distribution F with optimal reserve price r∗ and a matroid
market for which the expected revenue of the VCG mechanism with reserve price (1− ε)r∗ is not
submodular on full-rank sets.

Proof. For part (a), condition on the bidders’ valuations. Restrict the independent sets of the matroid to
the bidders that meet the reserve price. Since r ≥ r∗ and F is regular, all such bidders have nonnegative
virtual valuations. As in the proof of Theorem 3.2, regularity implies that the VCG mechanism with
reserve price r inadvertently maximizes the total virtual value over the independent sets of the restricted
matroid. Thus the virtual value of the mechanism’s allocation is the weighted rank of a matroid. As
in previous proofs, applying Corollary 2.7, taking expectations over valuations, and invoking (2.2)
establishes revenue-submodularity.
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Part (b) can be established using the distribution F that is an equal (50/50) mixture of the uniform
distribution on [0,1] and the “equal revenue distribution” with distribution function 1−1/x on [1,∞). This
distribution is continuous and regular, and its optimal reserve price is 1. Fix an arbitrarily small constant
ε > 0 and consider a graphic matroid comprising a cycle of length n (for n large) plus one parallel copy e′

of one of the edges e. Let q = (1+ ε)/2 denote the probability that a sample from F exceeds the reserve
price r = 1− ε . When both e and e′ are absent, the expected revenue of the VCG mechanism with this
reserve is q(n−1)(1− ε), with every winner paying the reserve price. For n large, when one of {e,e′} is
added, the expected revenue increases by ≈ q(1− ε). When both parallel edges are added, there are two
relevant cases (for n large). The valuations of e,e′ are both above 1 with probability 1/4, and the additional
revenue in this case is the expected minimum of two samples from the equal revenue distribution, which
is 2. In the other relevant case, at least one of the valuations of e,e′ exceeds the reserve price and at
most one of them exceeds 1. This occurs with probability (1− (1−q)2)−1/4 = 1/2+ ε− ε2/4, and
the additional revenue in this case is at least 1− ε . A quick calculation shows that the combined extra
revenue from the two cases strictly exceeds 2q(1− ε). Since the revenue increase from adding e and e′ is
more than double that of adding either one individually, we have a violation of revenue-submodularity
that involves only full-rank subsets of the matroid.

4 Revenue monotonicity of the VCG mechanism in matroids

We note in passing an interesting analog of Theorem 3.1 for the revenue monotonicity of the VCG
mechanism (with the Clarke pivot rule). Precisely, a mechanism is revenue monotone in a single-
parameter downward-closed domain (U,I) if, for every set of bidder valuations v and set S ⊆U , the
mechanism’s revenue in the full market is at least that in the market induced by S and v.

Theorem 4.1 (Monotonicity of VCG). The VCG mechanism is revenue monotone in a downward-closed
market if and only if the market is a matroid market.

Proof. For the “if” direction, fix a matroid market M = (U,I) and valuations v for the bidders. By
induction, we can consider only sets S that exclude a single bidder e of U . Breaking ties using bidders’
names, we can treat the valuations as distinct.

Recall that in a matroid market the VCG mechanism’s allocation can be computed by the greedy
algorithm (Section 2.2). By the exchange property, the greedy algorithm maintains the invariant that,
after processing a subset T of the bidders, it has selected the maximum-possible number r(T ) of winners.
Thus, a bidder i wins if and only if r(T ∪{i}) = r(T )+ 1, where T is the set of bidders considered
before i by the greedy algorithm. Let Tj denote the j bidders of U \ {i} with the highest valuations.
Since r is submodular, there is some ` ∈ 1,2, . . . , |U | so that r(Tj ∪{i}) = r(Tj)+ 1 for all j < ` and
r(Tj ∪{i}) = r(Tj) for all j ≥ `. Set pi equal to the smallest valuation of T`, or to 0 if ` = |U |. Then,
bidder i wins if and only if vi > pi, in which case it pays pi (recall Example 2.10).

Now suppose we delete bidder e from M. Let W and W ′ denote the winners under the VCG mechanism
in M and M \ {e}, respectively. For every i 6= e, since r is submodular, r(Tj \ {e}∪{i}) = r(Tj \ {e})
only when r(Tj ∪{i}) = r(Tj). Thus, the “threshold index” ` for bidder i 6= e is only larger after the
deletion of e, so its “threshold price”pi is only smaller. Thus, all bidders of W \{e} belong to W ′ and pay
lower prices. If W ′ contains no bidders not in W , then we are done. Otherwise, since r(M \{e})≤ r(M)
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and the VCG mechanism chooses a basis, we can write W ′ = W \ {e}∪{ f} for some bidder f /∈W .
Bidder f contributes revenue at most v f to the VCG mechanism in M \{e}. We conclude by noting that
the revenue pe contributed by e to the VCG mechanism in M is at least v f : if bidder e bids less than v f ,
then the VCG mechanism in M will choose the allocation W ′ instead of W .

For the “only if” direction, consider a non-matroid downward-closed market M = (U,I). By Propo-
sition 2.9, there are maximal sets A,B of I and an element y ∈ B such that A \ {x}∪{y} /∈ I for every
x ∈ A. Suppose that the bidders of A∪{y} have valuation 1 and all other bidders have valuation 0. The
set A maximizes welfare over the sets of I (with welfare |A|) and, by our choice of A and y, every other
set of I has welfare at most |A|−1. The VCG mechanism thus generates zero revenue in this market.
We complete the proof by identifying a submarket in which the VCG mechanism earns strictly positive
revenue.

Since I is downward closed, we have A∪{y} /∈ I and (A∩B)∪{y} ∈ I. We can therefore choose a set
A′ ⊇ A∩B and an element x ∈ A\B such that A′∪{x}∪{y} /∈ I and A′∪{y} ∈ I.2 In the matroid market
induced by A′∪{x,y}, there are at least two welfare-maximizing solutions, A′∪{x} and A′∪{y}. The
VCG mechanism chooses an allocation that includes either x or y (or both), and will collect a payment
of 1 from this bidder.

Unlike the other results in this paper, Theorem 4.1 is not stated for distributions over bidders’
valuations. Pointwise revenue monotonicity (as in Theorem 4.1) obviously implies expected revenue
monotonicity with respect to every distribution over bidders’ valuations.

5 Near-optimal market expansion

Given a market and a mechanism for it, and also an initial submarket, which k additional bidders should
be recruited to generate the largest increase in the auction’s revenue? This question is trivial when bidders
are indistinguishable, as in a multi-unit auction with i.i.d. bidder valuations: any k additional bidders
will do. As the next example shows, this basic optimization problem becomes quite subtle with bidder
asymmetries.

Example 5.1 (Expanding a Graphic Matroid). Consider a graphic matroid market G = (V,U), and
suppose that the initial submarket S is a spanning tree of G, that k = 1, and that the mechanism used is
the VCG mechanism. Suppose bidders’ valuations are i.i.d. draws from an exponential distribution with
rate 1. Adding a new bidder creates a cycle, say of length `. Once valuations have been sampled, the
VCG mechanism will select all bidders but the lowest one i on the cycle, and the other `−1 bidders of
the cycle will each be charged vi. (Bidders off the cycle are charged 0.) The expected revenue of the VCG
mechanism (over the random valuations) is (`−1)/`, since 1/` is the expected value of the minimum
of ` independent exponential random variables. Thus, in this instance, the optimal solution to the market
expansion problem is to add the edge of U \S that creates the longest cycle.

The market expansion problem is inapproximable without revenue submodularity, for example in
binary matroid markets with the VCG mechanism and an empty initial market.

2To see why such an A′ exists, start with A′ = A∩B and add elements x ∈ A \B to A′ one at a time so long as A′ ∪{y}
remains independent. Since A∪{y} is dependent, this process ends with A′ and x satisfying the claimed property.
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Theorem 5.2. The market expansion problem for binary matroids and the VCG mechanism admits no
polynomial-time algorithm with non-zero approximation ratio, unless P= NP.

Proof. Vardy [27] proved that finding a cycle of at most a given length in a binary matroid is NP-hard.
Given a binary matroid and the empty initial market, there are k bidders whose recruitment generates
positive revenue for the VCG mechanism if and only if the matroid has a cycle of length at most k (cf.,
Example 5.1).

Even with revenue submodularity, as in graphic matroids with the revenue-maximizing auction
(Theorem 3.1), the market expansion problem is NP-hard.

Theorem 5.3. Optimal market expansion is NP-hard, even for graphic matroids, i.i.d. valuations, and
the revenue-maximizing auction.

Proof. We provide a reduction from the Hamiltonian cycle problem [11, Problem GT37]. Given a
connected graph with n vertices, consider the corresponding graphic matroid, the empty submarket, and
a budget of n new bidders to recruit. Bidders’ valuations are (say) i.i.d. draws from the exponential
distribution with rate 1. By (2.2), the expected revenue in a given submarket is the expected maximum
virtual value of an acyclic subgraph. For a given subgraph T with n edges, the maximum virtual value of
an acyclic subgraph of T is simply the sum of the positive virtual valuations of bidders in T , unless the
bidders in T with positive virtual values include a cycle, in which case some positive virtual valuations
must be thrown out. Hamiltonian cycles (if any) are the submarkets that minimize the expected amount
of positive virtual value so wasted, and thus are the submarkets that maximize expected revenue.

Revenue submodularity leads directly to a positive result for near-optimal market expansion. By
greedy market expansion, we mean the heuristic of repeatedly (k times) recruiting the new bidder that
increases the expected revenue of an auction the most. Our next result follows from a classic analysis of
Nemhauser, Wolsey, and Fisher [23]. They showed that for every nonnegative, monotone, and submodular
set function f on a universe U , this greedy heuristic outputs a set S′ that is a (1−1/e)-approximation to
the maximum-value subset of U of size at most k: f (S′)≥ (1−1/e) ·max|S|≤k f (S).

Theorem 5.4. Greedy market expansion is a (1−1/e)-approximation algorithm for the market expansion
problem whenever the given auction is revenue monotone and revenue submodular on all submarkets
containing the initial market.

For example, since the revenue-maximizing auction with arbitrary (not necessarily regular or i.i.d.)
independent distributions is obviously expected revenue monotone, Theorems 3.1 and 5.4 imply that
greedy market expansion is a (1−1/e)-approximation algorithm in every matroid market.

For the VCG mechanism and bidder valuations that are i.i.d. draws from a regular distribution,
Theorems 3.2, 4.1, and 5.4 imply that greedy market expansion is a (1−1/e)-approximation algorithm
in matroid markets with a full-rank initial market.

Extensions Extensions of Theorem 5.4 are easy to come by. If only an α-approximation algorithm is
available for the subroutine that chooses the optimal next bidder to add—for example, due to sampling
error in estimating the expected revenue of a mechanism in a given submarket—the approximation bound
degrades only to 1−1/eα . The following result follows from, e. g., [12].
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Theorem 5.5. When using a subroutine that is an α-approximation algorithm for the problem of choosing
the optimal next bidder, greedy market expansion is a (1−1/eα)-approximation algorithm for the market
expansion problem whenever the given auction is revenue monotone and revenue submodular on all
submarkets containing the initial market.

The budget of k can be replaced by an arbitrary matroid constraint on the bidders of U \S without
changing the approximation guarantee [29]. For example, the feasible recruitable sets might correspond
to assignments of a fixed number of recruiters to different locations subject to geographic constraints (a
transversal matroid).

Theorem 5.6. Greedy market expansion is a (1−1/e)-approximation algorithm for the market expansion
problem subject to a matroid constraint whenever the given auction is revenue monotone and revenue
submodular on all submarkets containing the initial market.

As a third extension, we can attach a fixed recruiting cost to each bidder e. The objective is then
to maximize revenue minus recruiting costs. Adding costs can ruin revenue monotonicity but does not
affect submodularity. As long as the revenue submodularity condition in Theorem 5.4 holds and the
profit earned when recruiting the entire market is nonnegative, the market expansion problem can be
approximated to within a factor of 2/5 using randomized local search [10].

Theorem 5.7. There is a randomized local search algorithm that is a 2/5-approximation algorithm for
the market expansion problem with recruiting costs whenever the given auction is revenue submodular on
all submarkets containing the initial market, and recruiting the entire market guarantees nonnegative
profit.

6 Revenue guarantees for the VCG mechanism

6.1 Matroid markets

Are there interesting conditions under which the VCG mechanism inadvertently yields near-optimal
revenue? In matroid markets, even “modest competition” suffices for such a guarantee. We quantify
competition via the packing number of the matroid, defined as the maximum number of disjoint bases
that the matroid contains.

Theorem 6.1 (A Guarantee for the VCG Mechanism’s Revenue). In every matroid market M = (U,I)
with packing number κ and bidders’ valuations drawn i.i.d. from a regular distribution, the expected
revenue of the VCG mechanism is at least a (1− 1/κ) fraction of that of the revenue-maximizing
mechanism.

For example, in multi-unit auctions, the packing number is simply the factor by which the number of
bidders exceeds the number of goods (rounded down to an integer). The VCG mechanism generates zero
revenue when k ≤ n, so no approximation is possible when the packing number is 1. A packing number
of 2 suffices for a constant-factor approximation, and the expected revenue of the VCG mechanism
converges rapidly to that of the optimal mechanism as the packing number increases. Similarly to
Theorem 3.2, all of the hypotheses in Theorem 6.1 are generally necessary.
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A key step in the proof of Theorem 6.1 is a generalization of a result of Bulow and Klemperer [5]
that is interesting in its own right. The result resolves the following thought experiment. Suppose a
seller initially employs the VCG mechanism in a given market with i.i.d. bidder valuations. Which of
the following two options is better for revenue: switching to an optimal auction tailored to the given
valuation distribution, or performing a little market expansion? The next lemma shows that expanding
a matroid market by a new basis (under the VCG mechanism) is more profitable than switching to an
optimal mechanism. For example, for a k-unit auction with n bidders, adding k additional bidders is
guaranteed to boost expected revenue beyond that of an optimal auction in the original market. For a
matching market with k goods (a transversal matroid), adding k bidders who are collectively willing to
accept all k goods achieves the same guarantee.

Lemma 6.2 (Bulow-Klemperer in Matroid Markets). Let M be a matroid market with a set U of bidders
with valuations drawn i.i.d. from a regular distribution. The expected revenue of the VCG mechanism
for M is at least that of every optimal mechanism for a matroid market MS that is induced by a set S⊆U
that excludes a basis of M.

Our proof of Lemma 6.2 follows the high-level approach of Kirkegaard [17]. We first show that the
VCG mechanism is revenue-optimal for a different problem.

Lemma 6.3. Let M be a matroid market with a set U of bidders with valuations drawn i.i.d. from a
regular distribution. The VCG mechanism optimizes the expected revenue over strategyproof mechanisms
that always allocate to a basis of M.

Proof. Fix a valuation profile. Recall from Example 2.12 that the VCG mechanism can be implemented
via the greedy algorithm of Section 2.2 that considers bidders in nonincreasing order of valuation. Recall
also that the output of the greedy algorithm depends only on the ordering of the bidders, and that, for
i.i.d. valuations drawn from a regular distribution, the bidder orderings by valuation and by virtual
valuation coincide. Thus, as in the proof of Theorem 3.2, the VCG mechanism inadvertently maximizes
the total virtual value over the bases of the matroid. Taking expectations over the valuation profile and
applying (2.2) completes the proof.

Proof of Lemma 6.2. Fix matroids M and MS that satisfy the conditions of the lemma. The plan is to
define an allocation rule that always picks a basis of M and that has expected virtual value equal to that of
the optimal auction for MS. Lemma 6.3 and identity (2.2) then complete the proof.

To define the allocation rule for M, condition only on the valuations of bidders in S. Let W ⊆ S
denote the set of winners in the optimal mechanism for MS. Since U \S contains a basis, the exchange
property of matroids implies that W can be extended to a basis of M using bidders of U \S. Choose such
an extension XW ⊆U \S arbitrarily and allocate to the basis W ∪XW of M.

The expected virtual value earned by this “hybrid mechanism” equals that of the optimal mechanism
for MS plus the conditional expectation E[∑i∈XW ϕ(vi) | {vi | i ∈ S}]. We complete the proof by arguing
that this second term is zero. First, for every i ∈ XW , E[ϕ(vi) | {vi | i ∈ S}] = E[ϕ(vi)] because valuations
are independent. Second, for every i ∈ XW , the unconditional expectation E[ϕ(vi)] is zero—this can be
proved by simple calculation or by applying identity (2.2) to the single-good, single-bidder auction that
always gives the good to the bidder (for free).
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We now complete the proof of Theorem 6.1 using the revenue submodularity of the optimal mecha-
nism.

Proof of Theorem 6.1. For a matroid market X , let OPT(X) denote the expected revenue of the optimal
mechanism. Let B1, . . . ,Bκ denote κ disjoint bases of the given matroid M = (U,I). Obviously, deleting
all of these bases from M decreases the expected revenue of the optimal mechanism by at most OPT(M).
Since the expected revenue of the optimal mechanism is submodular on subsets of U (Theorem 3.1), we
have ∑

κ
i=1[OPT(M)−OPT(MU\Bi)]≤ OPT(M). So, there is a basis Bi with

OPT(M)−OPT(MU\Bi)≤ OPT(M)/κ

and hence
OPT(MU\Bi)≥ (1−1/κ) ·OPT(M) .

Lemma 6.2 implies that the expected revenue of the VCG mechanism in M is at least OPT(MU\Bi), which
completes the proof.

For a k-unit n-bidder auction, we can take advantage of the additional symmetry to strengthen
Theorem 6.1 using a “fractional packing number”: the expected revenue of the Vickrey auction is at
least a (1− k/n) fraction of that of the optimal auction. This follows directly from two observations:
Theorem 3.1 implies that the revenue of the optimal k-unit auction is concave in the number of bidders,
and Lemma 6.2 implies that the revenue of the k-unit VCG auction with n bidders is at least the revenue
of the k-unit optimal auction with n− k bidders.

7 Revenue properties of efficient keyword auctions

Search engines use pay-per-click keyword auctions to sell advertising bundled with search results. Our
revenue guarantees for the VCG mechanism extend to a standard model of these practically relevant
auctions. The main technical observation (Lemma 7.1) that enables this extension is that both the VCG
mechanism and the revenue-maximizing auction are revenue-equivalent to randomizations over multi-unit
auctions.

7.1 The model

We study a standard, single-shot model of pay-per-click keyword auctions (see for instance Varian [28]
and Edelman et al. [8]). In this model, an auction is run by a search engine on the event of a search
query and n bidders (advertisers) compete to have their advertisement displayed in one of k slots. A
slot-specific, publicly known parameter called the click-through rate Θ j specifies the probability of a
click on an advertisement placed in slot j. Higher slots are assumed to attract more clicks, meaning
Θ j ≥Θ j+1 for every j.

Each advertiser i has a private valuation vi for each click on its advertisement—vi could represent the
profit that the advertiser expects to make on a subsequent sale, with the probability of a sale appropriately
factored in. The total value realized by allocating advertiser i to slot j is vi ·Θ j. If a bidder i is allocated
xi clicks, its utility is xi · vi− pi, where pi is the total amount it pays. (The amount paid per click is pi/xi.)
We assume that the bidders’ valuations are i.i.d. draws from a regular distribution F .
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7.2 The reduction to multi-unit auctions and the revenue guarantee

We now show that efficient and revenue-maximizing keyword auctions are both revenue-equivalent to a
randomization over k multi-unit auctions, where the jth auction sells j identical units and is chosen with
relative probability Θ j−Θ j+1. This is shown for efficient auctions in [1, 8, 28]. We prove the lemma
more generally for any strategyproof sort-by-bid keyword auction with reserve r, meaning an auction that
sets a reserve price r and allocates the slots in order of non-increasing bid.

Lemma 7.1. The expected revenue from a strategyproof sort-by-bid keyword auction with reserve price
r, k slots, and n bidders with valuations drawn i.i.d. from F, is equal to the weighted sum of expected
revenues from k multi-unit auctions, each with reserve price r and n bidders with valuations drawn i.i.d.
from F. The ith multi-unit auction sells i objects and has weight Θi−Θi+1.

Proof. We prove the result for every possible realization of the valuations. Fix the valuations of the n
bidders and index bidders in non-increasing order of bids. Since we have fixed the allocation rule and we
assume that the auction is strategyproof, the payments are uniquely defined (Section 3.1). Specifically,
the payment of the ith winning bidder is

pi =
k

∑
j=i
(Θ j−Θ j+1) ·max(r,v j+1) . (7.1)

Let ` be the last bidder i with vi ≥ r; if there is no such bidder, let `= 0. Let k′ = min(k, `). By (7.1),
the total revenue of the auction is

∑
1≤i≤k′

pi = ∑
1≤i≤k′

k

∑
j=i
(Θ j−Θ j+1) ·max(r,v j+1)

= ∑
1≤ j≤k

(Θ j−Θ j+1) ·min(`, j) ·max(r,v j+1) . (7.2)

Note that the jth summand in (7.2) is precisely (Θ j−Θ j+1) times the revenue of a strategyproof j-unit
auction with reserve price r.

We now use Lemma 7.1 to establish a version of Theorem 6.1, and its extension to fractional packing
numbers, for keyword auctions.

Theorem 7.2. In an n-bidder k-slot pay-per-click keyword auction with bidders’ valuations drawn i.i.d.
from a regular distribution F, the expected revenue of the VCG mechanism is at least a (1−k/n) fraction
of that of the revenue-maximizing auction.

Proof. First, recall that the VCG mechanism is a sort-by-bid auction with reserve price 0 (see, e. g.,
Varian [28]). Similarly, the optimal keyword auction is a sort-by-bid auction with reserve price r = ϕ−1(0)
(see Edelman and Schwarz [9]), where ϕ is the virtual valuation function for the valuation distribution F .

For j ≤ k, let R j
Eff and R j

Opt denote the expected revenue of an efficient and revenue-optimal, respec-
tively, n-bidder j-unit auction with valuations drawn i.i.d. from F . Recall that these two auctions are
simply the Vickrey auction and the Vickrey auction with a reserve price r = ϕ−1(0).
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By Lemma 7.1, the expected revenue of the VCG mechanism and the revenue-optimal auction for the
keyword auction setting are

∑
1≤ j≤k

(Θ j−Θ j+1)R
j
Eff.

and
∑

1≤ j≤k
(Θ j−Θ j+1)R

j
Opt,

respectively.
By Theorem 6.1, we have

R j
Eff ≥

(
1− k

n

)
·R j

Opt

for every j ≤ k. Thus the expected revenue of the efficient auction is

∑
1≤ j≤k

(Θ j−Θ j+1) ·R j
Eff ≥

(
1− k

n

)
∑

1≤ j≤k
(Θ j−Θ j+1) ·R j

Opt,

which proves the desired approximation guarantee.

Theorem 7.2 states that even under moderate competition, when the number of bidders is a small
multiple of the number of slots, efficient keyword auctions yield near-optimal revenue. Practically,
this is good news for three reasons. First, an optimal auction is not trivial to implement, as it requires
knowledge of the valuation distribution F to choose an optimal reserve price. Second, optimal auctions
are tailored for monopoly settings. Third, economic efficiency, which is a socially desirable objective, is
not necessarily at odds with revenue, which is the natural objective for search engines to optimize.

In some sponsored search keyword auctions, the number k of slots is in principle infinite. But
intuitively, only the slots that receive a non-negligible number of clicks should matter. To make this
idea precise, we establish the following corollary to Theorem 7.2 when the click-through rates decrease
geometrically with ratio γ .

Corollary 7.3. Consider an n-bidder, n-slot pay-per-click keyword auction setting in which bidders’
valuations are drawn i.i.d. from a regular distribution F and the click-through rate Θi for each slot i is γ i

for some positive γ < 1. The expected revenue of the VCG mechanism in this setting is at least a

max
1≤ j≤n

f (γ, j)
f (γ,n)

·
(

1− j
n

)
(7.3)

fraction of that of the revenue-maximizing auction, where

f (γ, i) = 1− γ
i (i(1− γ)+1) .

Corollary 7.3 implies, for instance, that when γ = 1/2 and n ≥ 5 (and k is arbitrarily large), the
expected revenue of the VCG mechanism is at least a (1− 5/n)(0.89) fraction of that of the revenue-
maximizing auction. (Take the term corresponding to j = 5 in equation (7.3).)

We now prove Corollary 7.3.
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Proof of Corollary 7.3. Fix some j ∈ {1, . . . ,n}. Let r denote an optimal reserve price for F and ` the last
bidder i with vi ≥ r; if there is no such bidder, set `= 0. As in the proof of Lemma 7.1 and equation (7.2),
the expected revenues of an efficient and a revenue-maximizing k-slot keyword auction are

REff(k) = E

[
∑

1≤i≤k
(Θi−Θi+1) · i · vi+1

]
and

ROpt(k) = E

[
∑

1≤i≤k
(Θi−Θi+1) ·min(i, `) ·max(r,vi+1)

]
,

respectively. To bound REff(n) in terms of ROpt(n), we first write

REff(n) ≥ E

[
∑

1≤i≤ j
(Θi−Θi+1) · i · vi+1

]

≥
(

1− j
n

)
E

[
∑

1≤i≤ j
(Θi−Θi+1) ·min(i, `) ·max(r,vi+1)

]
.

The first inequality above follows because (Θi−Θi+1) · i · vi+1 ≥ 0 is non-negative for every i. To prove
the second inequality, we invoke Theorem 6.1 for each i ∈ {1, . . . , j}, as in the proof of Theorem 7.2. We
can complete the proof by showing that

ROpt( j)
ROpt(n)

≥ f (γ, j)
f (γ,n)

.

We prove the stronger pointwise statement that, for every valuation profile,

∑1≤i≤ j(Θi−Θi+1) ·min(i, `) ·max(r,vi+1)

∑1≤i≤n(Θi−Θi+1) ·min(i, `) ·max(r,vi+1)
≥ f (γ, j)

f (γ,n)
.

When `= 0 there is nothing to prove. Otherwise, this assertion follows by bounding the left-hand side
from below by

∑1≤i≤ j(Θi−Θi+1) ·min(i, `) ·max(r,v j+1)

∑1≤i≤n(Θi−Θi+1) ·min(i, `) ·max(r,v j+1)
=

∑1≤i≤ j(Θi−Θi+1) ·min(i, `)

∑1≤i≤n(Θi−Θi+1) ·min(i, `)

≥
∑1≤i≤ j(Θi−Θi+1) · i
∑1≤i≤n(Θi−Θi+1) · i

=
f (γ, j)
f (γ,n)

,

where the inequality follows from the fact that the ratio i/min{`, i} is non-decreasing in i, and the final
equation follows from algebra that relies on the relation Θi = γ i.

Remark 7.4. Most real-world keyword auctions are not strategyproof (see [1, 8, 28]) and can have
multiple Nash equilibria. On the other hand, in these auctions, there is always a natural equilibrium that
is revenue-equivalent to the truthful outcome of the VCG mechanism [1, 8, 28].
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8 Open questions

Our work suggests a number of open directions. First, are there additional assumptions (e. g., on bidders’
valuations) under which revenue submodularity or an approximate variant holds in non-matroid domains?
The same question can be asked about approximation guarantees for the expected revenue of the VCG
mechanism. Finally, we believe that market expansion optimization problems should be studied more
broadly. For example, is there a better approximation algorithm than greedy market expansion in
matroids? Are there non-trivial approximation algorithms for non-matroid domains, where revenue
submodularity—and, for the VCG mechanism, even revenue monotonicity—can fail?

References

[1] GAGAN AGGARWAL, ASHISH GOEL, AND RAJEEV MOTWANI: Truthful auctions for pricing
search keywords. In Proc. 7th ACM Conf. on Electronic Commerce, pp. 1–7. ACM Press, 2006.
[doi:10.1145/1134707.1134708] 113, 115

[2] LAWRENCE M. AUSUBEL AND PAUL R. MILGROM: Ascending auctions with package bidding.
Frontiers of Theoretical Economics, 1(1), 2002. Article 1. 99

[3] MOSHE BABAIOFF, NICOLE IMMORLICA, AND ROBERT D. KLEINBERG: Matroids, secretary
problems, and online mechanisms. In Proc. 18th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA’07), pp. 434–443. ACM Press, 2007. [ACM DL] . 99

[4] SUSHIL BIKHCHANDANI, SVEN DE VRIES, JAMES SCHUMMER, AND RAKESH V. VOHRA:
Ascending auctions for integral (poly)matroids with concave nondecreasing separable values. In
Proc. 19th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’08), pp. 864–873. ACM Press,
2008. [ACM DL] . 99

[5] JEREMY BULOW AND PAUL KLEMPERER: Auctions versus negotiations. American Economic
Review, 86(1):180–94, March 1996. 96, 99, 111

[6] MATTHEW C. CARY, ABRAHAM D. FLAXMAN, JASON D. HARTLINE, AND ANNA R. KARLIN:
Auctions for structured procurement. In Proc. 19th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA’08), pp. 304–313. ACM Press, 2008. [ACM DL] . 99

[7] FLORIN CONSTANTIN, JON FELDMAN, S. MUTHU MUTHUKRISHNAN, AND MARTIN PÁL: An
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