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Abstract: In the reordering buffer problem, we are given an input sequence of requests
for service each of which corresponds to a point in a metric space. The cost of serving the
requests heavily depends on the processing order. When serving a request the cost is equal
to the distance, in the metric space, between this request and the previously served request.
A reordering buffer with storage capacity k can be used to reorder the input sequence in
a restricted fashion so as to construct an output sequence with lower service cost. This
simple and universal framework is useful for many applications in computer science and
economics, e. g., disk scheduling, rendering in computer graphics, or painting shops in car
plants.

In this paper, we design online algorithms for the reordering buffer problem where the
goal is to minimize the total cost. Our main result is a strategy with a polylogarithmic com-
petitive ratio for general metric spaces. Previous work on the reordering buffer problem
only considered very restricted metric spaces. We obtain our result by first developing a
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deterministic algorithm for weighted trees whose competitive ratio depends on k and the
hop-diameter of the tree. Then we show how to improve this competitive ratio to O(log2 k)
for metric spaces that correspond to hierarchically well-separated trees. Combining this
result with the results on the probabilistic approximation of arbitrary metrics by tree met-
rics due to Fakcharoenphol, Rao, and Talwar, we obtain a randomized strategy for general
metric spaces that achieves a competitive ratio of O(log2 k · logn) in expectation against an
oblivious adversary. Here n denotes the number of distinct points in the metric space. Note
that the length of the input sequence can be much larger than n.

1 Introduction

In the reordering buffer problem, we are given an input sequence of requests for service each of which
corresponds to a point in a metric space (V,d), where V is a set of points and d is a distance function. The
cost of serving the requests heavily depends on the processing order. Serving a request p ∈V following
the service to a request q ∈V induces cost d(p,q), i. e., the distance between these two requests.

A reordering buffer can be used to reorder the input sequence in a restricted fashion so as to construct
an output sequence with lower service cost. At each point in time, the reordering buffer contains the first
k requests of the input sequence that have not been processed so far. A scheduling strategy has to decide
which request to serve next. Upon its decision, the corresponding request is removed from the buffer and
appended to the output sequence, and thereafter the next request in the input sequence takes its place.

Another formulation of the problem is the following: An undirected weighted graph G and an input
sequence of requests which correspond to vertices in G is given. At each point in time the first k
unprocessed requests from the input sequence are located at their respective vertices in the graph. The
scheduling algorithm controls one server that moves through the graph. The initial position of the server
can be chosen arbitrarily from the vertices that contain at least one of the first k requests from the input
sequence without cost. Thereafter, to serve a request, the server has to be moved to the vertex containing
that request. The cost of this movement is given by the length of the chosen path. If a request is served,
it is removed from the graph and the next request from the input sequence is placed at its corresponding
vertex. The objective is to process all requests from the input sequence while minimizing the total
distance the server moves.

This simple and universal framework is useful for many applications in computer science and eco-
nomics. In the following we give three examples (for further examples see [4, 9, 13, 14, 16]).

• In hard disks, the latency of a disk access is mainly induced by the movement of the head to the
respective cylinder. The latencies are the dominating factor for the performance of a hard disk. A
reordering buffer can be used to rearrange the incoming sequence of accesses in such a way that
latencies are reduced. This problem is known as disk scheduling (see, e. g., [17]).

• In computer graphics, a rendering system displays a 3D scene which is composed of primitives.
A significant factor for the performance of a rendering system are the state changes performed
by the graphics hardware. A state change occurs when two consecutively rendered primitives
differ in their attribute values, e. g., in their texture or shader program. The exact time required
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to perform a state change depends on the attribute values of the primitives causing the change.
A reordering buffer can be inserted between application and graphics hardware to rearrange the
incoming sequence of primitives in such a way that the cost of the state changes are reduced
(see [15]).

• In the painting shop of a car manufacturing plant, car bodies traverse the final layer painting
where each car body is painted with its own top coat. If two consecutive cars have to be painted
in different colors a color change is required which causes non-negligible set-up and cleaning
cost. This cost can be reduced by preceding the final layer painting with a reordering buffer (see,
e. g., [12]).

In this paper, we design online scheduling algorithms for the reordering buffer problem where the goal is
to minimize the total cost. An online algorithm does not have knowledge about the whole input sequence
in advance, but at any point in time only knows the k requests stored in its buffer and the requests already
served. The cost of the online algorithm is compared to the cost of an optimal offline strategy which
knows all requests in the input sequence in advance. However, the optimal offline strategy also has to
use the limited capacity buffer to reorder the input sequence. Note that if the buffer size k is equal to the
length of the input sequence, we allow arbitrary reorderings. Therefore there exists a straightforward
reduction from the traveling salesperson problem and hence, in general, the offline problem of finding
an optimal reordering is NP-hard. On the other hand, using dynamic programming the problem can be
solved in time O(Nk+1) where N is the number of requests in the input sequence (see [13]).

Our main result is a scheduling strategy with a polylogarithmic competitive ratio for general metric
spaces. Previous work on the reordering buffer problem only considered very restricted metric spaces
like line metrics [11, 13] and star metrics [1, 8, 9, 16]. We obtain our result by first developing a deter-
ministic algorithm for arbitrary weighted trees with a competitive ratio of O(D · logk), where D denotes
the hop-diameter of the tree, i. e., the maximum number of edges on a path connecting two nodes.
Then we show how to improve this competitive ratio to O(log2 k) for metric spaces that correspond to
hierarchically well-separated tree (HSTs). Combining this result with the results on probabilistically
approximating arbitrary metrics by tree metrics [5, 6, 10], we obtain a randomized scheduling strategy
for general metric spaces that achieves a competitive ratio of O(log2 k · logn) in expectation against an
oblivious adversary. Here n denotes the number of distinct points in the metric space. Note that the
length of the input sequence can be much larger than n.

1.1 Related work

Räcke, Sohler, and Westermann [16] introduced the reordering buffer problem for the uniform metric, in
which two points x and y are either at distance 0 (if x = y) or at distance 1 (if x 6= y). This setting models
the paint shop scenario: Two requests are at distance 1, if the corresponding cars are to be painted in
different colors, and at distance 0, otherwise. With this definition the total distance traveled by the server
is equal to the total number of color changes. The authors present a deterministic online algorithm with
a competitive ratio of O(log2 k). This has subsequently been improved by Englert and Westermann [9]
to a competitive ratio of O(logk) and later to O(logk/(log logk)) by Avigdor-Elgrabli and Rabani [3].
Both improvements also holds for a slightly more general class of metrics, the class of so-called star
metrics, which can be represented as the shortest path metric induced by weighted trees of height one.
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Khandekar and Pandit [13] analyze the reordering buffer problem for n uniformly-spaced points
on a line with the motivation that this scenario models the disc scheduling problem. They present a
randomized algorithm with a competitive ratio of O(log2 n) in expectation against an oblivious adversary.
Gamzu and Segev [11] improve this by presenting a deterministic Θ(logn)-competitive strategy that can
also be used to derive an algorithm for the continuous line. However, the performance then depends
polylogarithmically on the length of the input sequence. In addition, they give, for the line metric, a
lower bound of ≈ 2.154 on the competitive ratio of any deterministic algorithm. This is the only non-
trivial lower bound known so far.

Most of the work on approximating the offline scenario has been done in the maximization version
of the problem where the goal is to maximize the total cost-savings that result from reordering the
sequence. In terms of an optimal solution, the minimization and maximization scenario are identical.
However, in terms of approximation they behave quite differently in the sense that a c-approximate
solution for the maximization problem usually has very different cost from a c-approximate solution
for the minimization problem. For the uniform metric, Kohrt and Pruhs [14] present an approximation
algorithm with approximation ratio 20 for the maximization variant of the problem. Bar-Yehuda and
Laserson [4] improve on this result with an approximation guarantee of 9.

For n uniformly spaced points on a line, Khandekar and Pandit [13] investigate the offline version of
the minimization problem. They obtain a constant factor approximation guarantee with an algorithm that
runs in quasi-polynomial time. To the best of our knowledge, the best polynomial time approximation
algorithms for the minimization problem in the different scenarios discussed above are actually the
corresponding online algorithms.

Englert, Özmen, and Westermann [7] show that the concept of a reordering buffer is also useful for
other scheduling objectives. They present an extensive study of the power and limits of online reordering
for minimum makespan scheduling. Their main result concerns the minimum makespan scheduling
problem with reordering buffers on identical machines. They obtain tight bounds on the competitive
ratio that are much improved over the bounds for the problem variant without reordering.

Another problem similar to the one studied here is the k-client problem introduced and analyzed
by Alborzi et al. [2]. In the k-client problem we are given k clients, each of which generates an input
sequence of requests for service in a metric space. In each step, every client presents its first outstanding
request to the algorithm. The scheduling algorithm has to decide which of these k requests to serve.
Again, the cost of serving a request is equal to this requests distance to the previously served one (from
any client). The objective is to minimize the total cost. The authors present a deterministic strategy that
achieves a competitive ratio of 2k−1. Further, they give a lower bound of Ω(logk) on the competitive
ratio of any deterministic strategy. The k-client problem is closely related to our problem, in the sense
that in each time step a scheduling strategy has to choose between k requests in a metric space. At
least for the online algorithm both problems look more or less identical as in each time step it chooses a
request to be appended to the output sequence and a new request appears. A crucial difference however
may be that in the k-client problem an optimal offline algorithm can take into account that processing
different requests results in different requests to be released next. The offline algorithm can leverage this
to its advantage, and therefore the bounds on the competitive ratio for the k-client problem are much
larger.
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1.2 Our results

In Section 2, we start by introducing an online algorithm PAY for the reordering buffer problem on tree
metrics. The algorithm is inspired by the MAP strategy for star metrics introduced in [9]. However, our
algorithm is not a generalization of this strategy as the behavior of MAP and PAY on a star metric can
be different. In fact, analyzing our algorithm for the case of a star metric would lead to a simpler proof
of a logarithmic competitive ratio for this special case.

We analyze our algorithm for tree metrics in Section 3 and obtain the following result.

Theorem 1.1. Let T denote an arbitrary weighted tree, and let D denote the hop-diameter of T . For the
shortest path metric induced by T , our deterministic online algorithm PAY achieves a competitive ratio
of O(D · logk), where k denotes the size of the reordering buffer.

In Section 4, we then show how to improve the analysis for the special case that the underlying metric
space is the shortest path metric induced by a hierarchically well-separated tree (HST). For c > 1, a
c-HST is a rooted tree for which the edge lengths fulfill the following properties: For every vertex u
on some level i (where the level of a node is its unweighted distance to the root), all incident edges
connecting u to a node on level i + 1 have the same length, and this length is at most `/c, where `
denotes the length of the edge connecting u to its parent in the tree. We show the following result.

Theorem 1.2. For metric spaces that can be represented as the shortest path metric induced by an HST,
PAY achieves a competitive ratio of O(log2 k), where k denotes the size of the reordering buffer.

Fakcharoenphol, Rao, and Talwar [10] present a randomized approximation of arbitrary n-point metrics
by tree metrics with an approximation ratio of O(logn). The tree metrics used in this result are in fact
the shortest path metrics induced by the leaf nodes of HSTs. Combining this result with our strategy
for tree metric spaces, gives a randomized strategy for general metric spaces. This yields the following
result.

Corollary 1.3. For an n-point metric space, our randomized strategy achieves a competitive ratio of
O(log2 k · logn) in expectation against an oblivious adversary, where k denotes the size of the reordering
buffer.

2 The algorithm

In the following, we present the PAY algorithm for the reordering buffer problem in tree metrics. Ini-
tially, the first k requests from the input sequence are stored in the reordering buffer. The server is placed
at an arbitrary point corresponding to one of the k requests. PAY works in phases where each phase con-
sists of a selection step and a processing step. To simplify the presentation of the algorithm and the
analysis, the selection step is described as a continuous process. For this, we describe the behavior of
the algorithm for infinitesimal short time intervals [t, t +dt). Note that our notion of time is only used to
describe the selection step and despite the continuous nature of our description the selection step can be
easily discretized and implemented efficiently.

The two steps work as follows:
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Selection Step In this step, PAY selects a set of requests to be removed from its buffer and to be ap-
pended to the output sequence. This selection is done as follows. We assign a variable pay(e) to
each edge e of the tree, which at any given point in time has a value between 0 and the length `(e)
of the edge. We call an edge e a paid edge if pay(e) = `(e). Otherwise, we call e an unpaid edge.

During the selection process, the requests currently stored in the buffer are buying edges towards
vpay, where vpay denotes the current position of PAY’s server in the tree. This is done in the
following continuous process: In a time interval [t, t + dt) each request at each node u increases
the payment pay(e) by dt, where e is the first unpaid edge on the path from u to vpay. This process
continues until there exists a connected component induced by paid edges that contains vpay.

Processing Step In this step, PAY outputs all requests within the connected component. The order in
which these requests are visited is not important. The online algorithm only has to ensure that
each edge of the component is traversed at most twice and that the final position v̂pay, i. e., the
new position of the PAY-server for the next phase, is a node in the component that is farthest away
from vpay.1 Note that requests appearing during the processing step are ignored and will not be
served in this processing step.

After serving the requests the payment counter pay(e) on edges of the component is reset to 0.
Note however that the payment counter of edges not in the component is not reset and that this
payment will influence the selection step in future phases. This ends the phase.

These steps above are repeated as long as there exist at least k unprocessed requests. If the number of
unprocessed requests drops below k, PAY starts a clean-up phase, during which it simply processes all
remaining requests in an optimal fashion. For trees, this can be easily done in polynomial time (just as,
e. g., TSP can be solved optimally for tree metrics).

3 Analysis for general trees

Fix an input sequence and a tree T . For the analysis of the algorithm, we fix an optimal offline algorithm
OPT, and we compare the performance of OPT to the performance of our algorithm PAY. We view OPT
and PAY as working in a synchronized manner. After a phase of PAY during which f requests were
processed, i. e., appended to the output sequence, we simulate OPT until OPT processed f requests as
well. Then we start the next phase of PAY.

Throughout the analysis, we use vopt to denote the current position of the optimal server in the tree,
i. e., the position of the last request that was appended to OPT’s output sequence, and we use vpay to
denote the current position of PAY’s server.

If the PAY-server traverses an edge, it traverses the edge either towards the OPT-server or away from
it. Due to the following observation it is sufficient to derive a bound on the cost induced by traversals
away from OPT.

1At first glance, the requirement that the new position of the server is a node that is farthest away from the previous position
may seem like a subtlety, but it will be used in the proof of the following theorem and is, in fact, critical for achieving a
sublinear competitive ratio.
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Observation 3.1. Let PAYaway(e) and PAYtowards(e) denote the total cost induced by traversal of edge e
by the PAY-server away from OPT and towards OPT, respectively. Let OPT(e) denote the cost induced
due to traversals of edge e by the OPT-server. For each edge e,

PAYtowards(e)≤ PAYaway(e)+2 ·OPT(e) .

Proof. Fix an edge e. First suppose that the PAY-server and the OPT-server both start on the same side
of e. In this case,

PAYtowards(e)≤ PAYaway(e)+OPT(e) .

To see this, we study how the left and the right side of the inequality change over time. In the beginning,
PAYaway(e) = OPT(e) = PAYtowards(e) = 0. The right side of the inequality is increased first (by `(e))
since both servers start on the same side of e.

Every but the last increase of the left side of the inequality is followed by an increase of the right side
(both increases are by the amount `(e)). To see this, suppose PAY traverses e towards the OPT-server.
After the traversal both servers are on the same side of e. Thus, the next traversal of e is either a traversal
by the OPT-server or a traversal by the PAY-server away from the OPT-server.

Now assume that the servers start on different sides of e. Observe that the OPT-server has to traverse
e at least once since there is at least one request on the side of e on which the PAY-server starts (recall
that the initial position of the PAY-server is one of the first k requests). Thus, OPT(e)≥ `(e).

After e is traversed once—either by the OPT-server or the PAY-server—both servers reside on the
same side of e. Ignoring the cost of the first traversal of e and using the arguments above, we get
PAYtowards(e)≤ PAYaway(e)+OPT(e). Taking the first traversal into account gives

PAYtowards(e)≤ PAYaway(e)+OPT(e)+ `(e)≤ PAYaway(e)+2 ·OPT(e) .

In order to obtain our result we have to relate ∑e PAYaway(e) to the cost of an optimum solution.
Ideally we would like to make an argument of the following type: For every fixed edge e, analyze the
number of traversal of e by the PAY-server between two consecutive traversals of e by the OPT-server.
If this number is bounded by at most O(D · logk), we have our desired result. Unfortunately, doing an
edge-by-edge analysis like this fails, as one can easily construct scenarios in which OPT can avoid using
some edge for a long time at the cost of using other edges much more frequently.

Therefore we use two concepts to amortize cost. First we introduce a counter collected(e) for each
edge e with the intuition that at any point in time this counter describes the total cost that was generated
on e in previous phases. Consequently, during a processing step in which e is traversed, the counter
collected(e) would be increased by `(e) while the counter pay(e) is set to 0. Note that the counter pay(e)
is part of the algorithm whereas the collected(e) counter is only introduced as part of our analysis.

Now, to move cost between edges we slightly modify the handling of the collected(e)-counters. At
the end of a processing step, when the algorithms sets all counters pay(e) for edges of the connected
component to 0, we do not increase some of the collected(e) counters and instead increase others by
more than `(e) in such a way that

∑
e traversed

away from OPT

`(e)≤ ∑
e ∈ component

∆collected(e) ,
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vpay

v̂pay

vopt

x

Case (i): Edges on the vpay-x path.

Case (iv): Other edges of the component.

Edges not in the component.

Case (iii): Edges on the x-v̂pay path.

Case (ii): Edges on the x-vopt path.

Figure 1: The different types of edges in the component traversed by PAY.

where ∆collected(e) denotes the increase of counter collected(e). If we show that we can relate
∑e collected(e) to the cost of the optimum solution, we get our result as ∑e collected(e) still bounds
the cost of the algorithm PAY.

As a second concept we introduce the notion of discount. In the selection step of the algorithm,
requests generate payment in a continuous process. Similarly, we now let requests stored in PAY’s or
OPT’s buffer generate discount. Again, this is solely done for the analysis.

Fix a selection step and a request p at position vp. Recall that vpay denotes the current position
of the PAY-server. Let Ep denote the set of edges on the vp–vpay path that have been traversed by the
PAY-server after the request p arrived.2 We say that a request p that is in PAY’s or OPT’s buffer at time
t generates a discount of dt/(8D) during the time interval [t, t + dt) on all edges in Ep. Similar to the
counter pay(e) which was introduced in the algorithm, we use a counter discount(e) to keep track of the
current discount on an edge e. That is, the above request p increases discount(e) by dt/(8D) during each
time interval of length dt for every edge e in Ep. This discount generation is only done in the analysis.
Hence, we can assume that OPT and especially OPT’s buffer content is known.

We now describe precisely how the collected(e) and discount(e) counters are changed during a
processing step.

For a given processing step, let x denote the node at which the paths from vpay to v̂pay and from vpay
to vopt split, where vopt denotes the current position of the optimal server in the tree and v̂pay denotes
the position of the PAY-server at the end of the processing step. The PAY-server traverses the connected
component in such a way that the edges on the vpay–x path are traversed once towards the OPT-server,
the edges on the x–v̂pay path are traversed once away from the OPT-server and the remaining edges in
the connected component are traversed twice (once towards the OPT-server and once away from it).

At the end of a processing step we change the counters as follows (see Figure 1):

(i) For edges on the vpay–x path, we do not change collected(e) and reset discount(e) to 0.

This is reasonable as these edges are not traversed in direction away from OPT, and, hence, do
not contribute to the increase in ∑e PAYaway(e).

2This technicality is only needed for the results in Section 4. For the results in Section 3 it would be sufficient to generate
discount on every edge on the vp–vpay path.
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(ii) For edges in the intersection of the component with the x–vopt path, we do not change collected(e)
and reset discount(e) to 0.

Note that these edges are traversed by the PAY-server in direction away from OPT. Hence, these
edges contribute to the increase in ∑e PAYaway(e), and we still need to account for them.

(iii) For edges that are on the x–v̂pay path, we increase collected(e) by 2`(e)−discount(e) and reset
discount(e) to 0.

Since we choose v̂pay as a farthest request from vpay in the component, it holds that the total
length of edges of type (iii) is at least as large as the length of edges of type (ii). Therefore,
the stronger increase in the collected(e) counter for these edges offsets the missing increase for
type (ii) edges.

(iv) For the remaining edges in the connected component, we increase collected(e) by `(e)−
discount(e) and reset discount(e) to 0.

With these counter changes, the total collected payment after the whole input has been processed is
∑e collected(e) ≥ ∑e PAYaway(e)−discount, where discount denotes the total amount of discount gen-
erated over the entire duration of the execution of the algorithm. In order to derive a meaningful bound
from this, we need an upper bound on discount.

Observation 3.2. The total generated discount is at most CPAY/4, where CPAY denotes the total cost of
PAY on the input sequence.

Proof. At any point in time, the total number of requests that generate discount is at most 2k. Each of
these requests generates discount on at most D edges. This means that in a time interval of length dt a
total discount of at most k · dt/4 is generated. On the other hand, the k requests stored in PAY’s buffer
generate a payment of k · dt in each time interval of length dt. Hence, the total generated discount is
at most a fourth of the total generated payment, where total generated payment is the total increase of
pay(e) counters over the entire duration of the execution of the algorithm.

The total generated payment is at most the total cost of PAY since payment is not removed from an
edge e unless PAY moves over e and, after the whole input has been processed, all pay(e) counters are 0
(otherwise there has to be an unprocessed request that is responsible for the remaining payment).

We will show that, for every edge e, collected(e)≤ O(D logk) ·OPT(e). This gives

CPAY = 4 · (CPAY/2−COPT−CPAY/4)+4 ·COPT

≤ 4 ·
(
∑
e

PAYaway(e)−CPAY/4
)
+4 ·COPT

≤ 4 ·
(
∑
e

PAYaway(e)−discount
)
+4 ·COPT

≤ 4 ·∑
e

collected(e)+4 ·COPT

≤ O(D logk) ·∑
e

OPT(e)+4 ·COPT

= O(D logk) ·COPT ,
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where COPT denotes the total cost of an optimal offline algorithm. The second step holds due to Ob-
servation 3.1 and the fact that CPAY = ∑e(PAYaway(e) + PAYtowards(e)). The third step holds due to
Observation 3.2.

In order to show the missing statement collected(e) ≤ O(D logk) ·OPT(e) we need to compare the
collected payment on an edge e = {u,v} to the cost of OPT on e. Note that whenever collected(e) is
changed, it increases by at most 2`(e). However, it may also decrease depending on the value of the
discount(e)-counter.

In order for the inequality collected(e) ≤ O(D logk) ·OPT(e) to be violated there need to be long
sequences of changes to the counter collected(e)—and many of these changes have to increase the
counter—without OPT visiting e, as this would increase OPT(e) by `(e). The following lemma forms
the crucial part of our analysis and shows that this is not possible.

Lemma 3.3. Let [istart, . . . , iend] denote a sequence of consecutive phases during which OPT does not
traverse edge e. Then the number of phases in [istart, . . . , iend] in which the counter collected(e) increases
is O(D logk).

Proof. Let Tu and Tv denote the trees obtained when deleting e = {u,v} from T , and assume without
loss of generality that at the beginning of the phase istart OPT’s server is located in Tu. We call a request
opt-exclusive (in phase i) if at the beginning of the phase the request is in OPT’s buffer but not in PAY’s
buffer. Similarly, we call a request pay-exclusive if it is held by PAY but not by OPT.

Let pay-excli(Tv) and opt-excli(Tv) denote the number of pay-exclusive and opt-exclusive requests,
respectively, that are in sub-tree Tv at the beginning of phase i. Note that during phases in [istart, . . . , iend]
the number of pay-exclusive requests in Tv cannot increase and the number of opt-exclusive requests in
Tv cannot decrease, as this would require OPT to visit the sub-tree.

Let ifirst ≥ istart denote the first phase in which the collected(e)-counter changes. If such a phase
does not exist, then the lemma obviously holds. The following proposition shows that an increase
in the counter collected(e) occurring after ifirst is always accompanied by either a large decrease in
pay-excli(Tv) or a large increase in opt-excli(Tv). This allows us to derive a bound on the total number
of increases of the collected(e)-counter during phases in [istart, . . . , iend].

Proposition 3.4. Let i ∈ [ifirst + 1, . . . , iend] denote a phase in which the counter collected(e) increases.
Then either

opt-excli+1(Tv) >
(

1+
1

16D

)
·opt-excli(Tv)

or

pay-excli+1(Tv) <
(

1− 1
16D

)
·pay-excli(Tv) .

Proof. First observe that in the beginning of the phase i the PAY-server is located in Tu, as otherwise
e lies either on the vpay–x path or on the x–vopt path, and hence the collected(e)-counter would not be
increased. Furthermore, the edge e has to be part of the connected component traversed by the PAY
server at the end of phase i, since otherwise the value of collected(e) also does not change.
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Let nrem denote the number of requests that generate payment on e in phase i, i. e., the number of
requests that, at some point during the selection step of the phase, increase the pay(e)-counter used by
the algorithm. Note that since PAY’s server is located in Tu all these payment generating requests are in
Tv. Further, observe that all these requests are removed from the online buffer at the end of phase i. This
is due to the fact that e is part of the connected component at the end of phase i and, consequently, so is
every request that increases the pay(e)-counter during the phase.

Let nopt
rem ≤ nrem denote the number of payment generating requests that are held by OPT and by

PAY, and let npay-excl
rem denote the number of pay-exclusive requests that generate payment on e. Note that

nrem = nopt
rem +npay-excl

rem .
Observe that all requests contributing to nopt

rem are held by OPT and are removed from PAY’s buffer
at the end of phase i. Hence, these requests become opt-exclusive for phase i + 1. Similarly, requests
contributing to npay-excl

rem are removed from PAY’s buffer and decrease pay-excl(Tv) accordingly. Hence,

opt-excli+1(Tv)−opt-excli(Tv) = nopt
rem and

pay-excli(Tv)−pay-excli+1(Tv) = npay-excl
rem .

Now assume for contradiction that

opt-excli+1(Tv) ≤
(

1+
1

16D

)
·opt-excli(Tv) and

pay-excli+1(Tv) ≥
(

1− 1
16D

)
·pay-excli(Tv) ,

which gives
opt-excli(Tv)

16D
+

pay-excli(Tv)
16D

≥ nopt
rem +npay-excl

rem = nrem .

Let j ∈ {ifirst, . . . , i− 1} be the most recent phase before phase i during which PAY visited Tv. The re-
quests contributing to nrem are the only requests that generate payment on e during phases j + 1, . . . , i.
Note that the set of opt-exclusive and pay-exclusive requests in Tv does not change during phases
j + 1, . . . , i− 1, since PAY’s and OPT’s server are both located in Tu. Thus, all opt-exclusive and
pay-exclusive requests arrived before PAY’s server last traversed e in phase j. Hence, all the requests
contributing to opt-excli(Tv) and pay-excli(Tv) generate discount on e. Therefore, the total discount
generated on e during phases j +1, . . . , i is at least

discount(e) ≥ `(e)
nrem

· opt-excli(Tv)+pay-excli(Tv)
8D

≥ `(e)
nrem

· 16D ·nrem

8D
= 2 · `(e) ,

where the first inequality follows since pay(e) = 0 at the beginning of phase j + 1, pay(e) = `(e) right
before the processing step of phase i, and only nrem requests generate payment on e. Thus, `(e)/nrem
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is a lower bound on the time needed to pay for e and hence also for the time during which discount is
generated.

However, the counter collected(e) increases by at most 2`(e)−discount(e), and hence collected(e)
does not increase in phase i. This contradiction completes the proof of the proposition.

Now, we can deduce the lemma from the proposition above. Since the number of opt-exclusive and pay-
exclusive requests in Tv are both bounded by k, the counter collected(e) can only increase O(D logk)
times.

The lemma directly implies collected(e) ≤ O(D logk) ·OPT(e). As previously outlined, this shows
that PAY achieves a competitive ratio of O(D logk).

4 Analysis for HSTs

In this section, we give an improved analysis for the competitive ratio of our online algorithm on metric
spaces that can be represented as the shortest path metric induced by the leaf nodes of so-called 2-HSTs.

Definition 4.1. A 2-HST is a rooted tree such that

• all leaf nodes are on the same level, i. e., have the same hop-distance from the root,

• all edges on the same level have the same length, and

• the length of an edge connecting a level i node to a level i + 1 node is half the length of an edge
connecting a level i−1 node to a level i node.

Remark 4.2. The literature contains several slightly different definitions of c-HSTs. It is well-known
that, for constant c, all these c-HSTs can be suitably approximated by a 2-HST according to the above
definition. Also, the restriction to leaf nodes can be easily removed using this technique. This means that
Theorem 1.2 follows from the arguments about 2-HSTs in this section. For completeness, Appendix A.1
contains more details on these approximations.

Our analysis for general trees in the last section consists of the following main arguments:

1. For every edge e,
PAYtowards(e)≤ PAYaway(e)+2 ·OPT(e) ,

as shown by Observation 3.1.

2. Then we introduced the notion of discount and, for every edge e, a counter collected(e) and
a counter discount(e). We described how these counter-values are changed at the end of each
processing step.

The counter-values are changed in such a way that, after the whole input has been processed, we
have

∑
e

collected(e)≥∑
e

PAYaway(e)−discount ,

where discount denotes the total amount of discount generated over the entire duration of the
execution of the algorithm.
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3. Observation 3.2 shows that the way in which we generate discount ensures that discount ≤
CPAY/4.

4. And finally, Lemma 3.3 shows that, for every edge e, collected(e)≤ O(D logk) ·OPT(e).

The key idea for improving the analysis of the previous section for the special case of HSTs is to generate
and distribute the discount in a more sophisticated manner. The goal is to increase the amount of discount
an edge receives in a time interval [t, t +dt) by a single request from dt/(8D) to dt/Θ(logk). If we can
do this while otherwise maintaining the properties of the discount distribution, Theorem 1.1 will improve
to a competitive ratio of O(log2 k).

Recall that, in our previous analysis, each element p either stored in PAY’s buffer or OPT’s buffer (or
both) generates discount in the following way: Ep denotes the set of edges on the vpay–vp path that have
been traversed by the PAY-server after the request p arrived. Then p generates a discount of dt/(8D) in
each time interval of length dt on each edge in Ep.

We now change this discount generation as follows. Let r denote the node with lowest level on the
vpay–vp path, i. e., the node on the path that has the smallest distance to the root of the tree. We divide
the edges in Ep into three different types:

1. Edges that are ancestor edges of vpay in the rooted tree, i. e., edges on the vpay–r path.

2. The first logk +7 edges on the r–vp path. We call these edges long edges.

3. The remaining edges (if any) on the r–vp path. We call these edges short edges.

Let emax denote the longest edge on the r–vp path (which, due to the definition of an HST, is the first
edge). We now define that, in a time interval of length dt, request p generates no discount on edges
on the vpay–r path, generates a discount of dt/(16(logk + 7)) on every long edge contained in Ep, and
generates a discount of k ·dt ·4`(e)/`(emax) on every short edge contained in Ep.

With this modified discount generation we still can show Observation 3.2, as follows. In a time
interval of length dt, each request generates a discount of at most

∑
long edge e

dt
16(logk +7)

+ ∑
short edge e

k ·dt ·4`(e)
`(emax)

≤ dt
16

+
4k ·dt
`(emax)

· ∑
short edge e

`(e) .

The edge lengths on the r–vp path are geometrically decreasing. Hence, ∑short edge e `(e)≤ `(emax)/(64k)
since the first logk+7 edges on the path are long edges. Thus, the discount generated by a single request
is bounded by

dt
16

+
4k ·dt
`(emax)

· ∑
short edge e

`(e)≤ dt
8

.

Following the arguments in the proof of Observation 3.2, this shows that discount≤CPAY/4.
We are now almost ready to establish an improved version of Lemma 3.3 for HSTs. Unfortunately,

since edges that are ancestor edges of vpay do not receive any discount anymore, some of the collected(e)-
counters could be increased much more frequently than before. Lemma 3.3 may not hold anymore. We
have to make one last technical adjustment to the proof in the previous section.
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r

x

vpay vopt v̂pay

(iii.a)

(iii.b)

Case (i): Edges on the vpay-x path.

Case (iv): Other edges of the component.

Edges not in the component.

Case (ii): Edges on the x-vopt path.

Case (iii.a): Upward edges on the x-v̂pay path.

Case (iii.b): Downward edges on the x-v̂pay path.

Figure 2: The different types of edges considered in the HST analysis.

In the last section, we defined how the counters collected(e) and discount(e) are changed at the end
of each processing step. This was done in such a way that, after the whole input has been processed,
we have ∑e collected(e) ≥ ∑e PAYaway(e)− discount. There were four different types of edges in the
connected component. We are now changing the third type. These were the edges on the x–v̂pay path,
and in the previous section we increased their collected(e)-counters by 2`(e)−discount(e).

Let r denote the root of the connected component, i. e., the node on the lowest level in the component.
Note that r lies on the vpay–v̂pay path as we always choose v̂pay as the node in the connected component
that is furthest from vpay. We split edges of the third type (Case (iii)), i. e., edges on the x–v̂pay path, into
two sub-cases, namely those edges on the x–v̂pay path that also lie on the vpay–r path (upward edges),
and those edges on the x–v̂pay path that also lie on the r–v̂pay path (downward edges) (see Figure 2). The
counters for these edges are changed as follows:

(iii.a) If the edge e is an ancestor edge of vpay, i. e., e lies in the intersection of the vpay–r path and the
x–v̂pay path, reset the counters discount(e) to 0 without increasing the counter collected(e).

(iii.b) If the edge e is not an ancestor edge of vpay, i. e., e lies in the intersection of the r–v̂pay path
and the x–v̂pay path, increase the counter collected(e) by 4`(e)−discount(e), and then reset the
counters discount(e) to 0. This means that the increase of the counter collected(e) exceeds the
previously needed increase of 2`(e)−discount(e) by 2`(e).

The excess in Case (iii.b) is used to counteract the now omitted increase of collected(e′)-counters on each
edge e′ in the intersection of the vpay–r and the x–v̂pay path (Case (iii.a)). First observe that previously
each collected(e′)-counter was at most increased by 2`(e′), i. e., we only need to show that the total
length of edges generating excess (Case (iii.b) edges) is at least as large as the length of edges for which
the collected(e′) counter is not increased anymore (Case (iii.a) edges).

First, assume that the root r does not lie on the x–v̂pay path, i. e., there are no edges corresponding
to Case (iii.a). Thus, trivially, the total length of edges corresponding to Case (iii.a) is at most the total
length of edges corresponding to Case (iii.b).

Now, assume that the root r of the component lies on the x–v̂pay path. In this case, edges correspond-
ing to Case (iii.a) are the edges on the x–r path and edges corresponding to Case (iii.b) are edges on the

THEORY OF COMPUTING, Volume 6 (2010), pp. 27–46 40

http://dx.doi.org/10.4086/toc


REORDERING BUFFERS FOR GENERAL METRIC SPACES

r–v̂pay path. The latter is at least as long as the former since the x–r path is completely contained in the
vpay–r path and the vpay-r path has the same length as the r–v̂pay path. This shows that the new counter
changes still fulfill

∑
e

collected(e)≥∑
e

PAYaway(e)−discount .

Observe that, up to Lemma 3.3, all the main arguments from the previous section about general trees go
through, even with these changes to the discount generation process and the changes to the collected(e)-
counters.

The central claim in the proof of Lemma 3.3 is stated in Proposition 3.4. For HSTs, we are now
ready to give an improved version of Proposition 3.4. This directly improves the bound on the number
of increases to the collected(e)-counter given by Lemma 3.3, which, in turn, gives Theorem 1.2.

Let e = {u,v} denote an edge in the connected component of phase i, and let u be the parent of v.
Let Tu and Tv denote the two trees obtained by deleting e from the HST.

Proposition 4.3. Let i ∈ [ifirst + 1, . . . , iend] denote a phase in which the counter collected(e) increases.
Then either

opt-excli+1(Tv) >
(

1+
1

64(logk +7)

)
·opt-excli(Tv)

or

pay-excli+1(Tv) <
(

1− 1
64(logk +7)

)
·pay-excli(Tv) .

Proof. If, in the beginning of phase i, PAY’s server is located in Tv, collected(e) is not changed in the
phase. To see this observe that e lies on the vpay–v̂pay path because the root of the connected component
lies both in Tu and on the vpay–v̂pay path. This excludes Case (ii) and Case (iv). The fact that e is
an ancestor edge of vpay excludes Case (iii.b). Hence, e belongs either to Case (i) or Case (iii.a) and
collected(e) is not changed.

If PAY’s server is located in Tu but OPT’s server is located in Tv, collected(e) is not changed either,
since in this case e lies on the vpay–vopt path and hence, belongs either to Case (i) or Case (ii). Thus, we
may assume that both servers are located in Tu.

Following the same arguments and notation as in Proposition 3.4, the assumption that the proposition
does not hold implies

opt-excli(Tv)
64(logk +7)

+
pay-excli(Tv)
64(logk +7)

≥ nopt
rem +npay-excl

rem = nrem .

The following claim ensures that any request that generated discount on e did so at rate 1/(16/(logk +
7)), i. e., the request did not consider e to be a short edge.

Claim 4.4. There is no request that generates discount on e as a short edge.

Proof. We show that in the case that a request p in Tv generates discount on edge e as a short edge, the
accumulated discount on e in phase i when e is contained in the connected component is at least 4`(e).
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This means that the collected(e) counter would not increase as ∆collected(e) ≤ 4`(e)−discount(e) is
negative. This would be a contradiction to the choice of the phase i.

Fix a request p ∈ Tv that generates discount on edge e as a short edge. Assume that by the end of
phase i the smallest rate at which request p generated discount on e has been k ·dt ·4`(e)/`(emax), where
emax = {u′,v′} is some ancestor edge of e and u′ is the parent node of v′. Now, consider the most recent
traversal of emax by PAY in direction from v′ to u′, i. e., away from p (this traversal happens at some
point between phase j and phase i).

Since request p generates discount on edge e, e has to be contained in the edge-set Ep. Therefore,
request p already exists in Tv at this point and generates a discount of at least k ·dt ·4`(e)/`(emax) on e
in every time interval of length dt. Right after PAY moved over emax there is no payment on this edge,
and in order for PAY to return into the sub-tree Tv′ the edge emax has to be paid for. However, in a time
interval of length dt only a total payment of k ·dt is generated by the k requests stored in PAY’s buffer.
Hence, by the time PAY returns into Tv′ a discount of at least 4`(e) has been generated by the request p
on the edge e.

Let j ∈ {ifirst, . . . , i−1} be the most recent phase before phase i during which PAY visited Tv. The re-
quests contributing to nrem are the only requests that generate payment on e during phases j+1, . . . , i. All
the requests contributing to opt-excli(Tv) and pay-excli(Tv) generate discount on e during these phases.
Note that the number of opt-exclusive and pay-exclusive requests in Tv does not change during phases
j +1, . . . , i−1 since PAY’s and OPT’s server are both located in Tu. Therefore the total discount gener-
ated on e during these phases is at least

discount(e) ≥ `(e)
nrem

· opt-excli(Tv)+pay-excli(Tv)
16(logk +7)

≥ `(e)
nrem

· 64(logk +7) ·nrem

16(logk +7)
= 4 · `(e) ,

where the first inequality follows since pay(e) = 0 at the beginning of phase j + 1, pay(e) = `(e) right
before the processing step of phase i, and only nrem requests generate payment on e. Thus, `(e)/nrem
is a lower bound on the time needed to pay for e and hence also for the time during which discount
is generated. However, the counter collected(e) increases by at most 4`(e)− discount(e), and hence
collected(e) does not increase in phase i. This contradiction completes the proof of the proposition.

A Appendix

A.1 Approximating different types of HSTs

In the following we sketch how to approximate a c-HST according to the original definition by Bartal [5]
by a 2-HST according to Definition 4.1.

Definition A.1 (Bartal [5]). Let c > 1. A c-hierarchically well separated tree (c-HST) is defined as a
weighted, rooted tree with the following properties.
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1. The edge weight from any node to each of its children is the same.

2. The edge weights along any path from the root to a leaf are decreasing by a factor of at least c.

Given a c-HST according to the above definition we transform it into a 2-HST according to Defini-
tion 4.1 while changing distances by at most a constant factor. First, we round all edge-length up to the
nearest power of two. This only increases distances by a factor of 2.

Now, let T1,T2, . . . denote the sub-trees that result from this new tree when only considering edges
of a certain length `. The rules for an HST (both definitions) require that the Ti’s are trees of height 1.
However, we now may have trees of height up to 1/ log2 c = O(1) as edges of different length may have
been rounded to the same value. We remedy this by attaching all nodes in a tree Ti to the root node of
that tree. This process decreases distances by at most a factor 1/ log2 c = O(1). This still holds when
performing the process for all possible edge-length.

We now have a tree in which

• every child node of a node has the same length and

• the edge weights along any path from the root to a leaf are decreasing by a factor of at least 2.

In a third phase we consider nodes v for which the distance from v to the parent of v is larger than twice
the distance to its children. For each child c j of v we replace the edge (v,c j) by a sequence of edges
and dummy nodes with geometrically decreasing distances. This can be done while only increasing the
distance between parent and child by a constant factor.

Finally, we have to ensure that all leaf nodes are on the same level, i. e., have the same hop-distance
to the root. Let `max denote the maximum level of a leaf node. For a leaf node v with level less than
`max we replace its parent edge by a sequence of edges with geometrically decreasing length until v is
on level `max. This only increases the distance between v and its parent by a constant factor.
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