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Abstract: Let A be a real symmetric matrix of sizeN such that the number of non-zero
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are specified by an efficiently computable function. We consider the problem of estimating
an arbitrary diagonal entry(Am) j j of the matrixAm up to an error ofε bm, whereb is an
a priori given upper bound on the norm ofA andm andε are polylogarithmic and inverse
polylogarithmic inN, respectively.

We show that this problem is PromiseBQP-complete. It can be solved efficiently on
a quantum computer by repeatedly applying measurements ofA to the jth basis vector
and raising the outcome to themth power. Conversely, every uniform quantum circuit of
polynomial length can be encoded into a sparse matrix such that some basis vector| j〉
corresponding to the input induces two different spectral measures depending on whether
the input is accepted or not. These measures can be distinguished by estimating themth
statistical moment for some appropriately chosenm, i. e., by thejth diagonal entry ofAm.
The problem remains PromiseBQP-hard when restricted to matrices having only−1, 0, and
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1 Introduction

It is still not understood well enough which problems are tractable for quantum computers. It is there-
fore desirable to better understand the class of problems which can be solved efficiently on a quantum
computer. In quantum complexity theory, this class is referred to as BQP. Meanwhile, some character-
izations of BQP are known [19, 24, 2, 25]. Strictly speaking, these are characterizations of the class
PromiseBQP instead of BQP, a difference that is often ignored in the literature (seeSection2 for clarify-
ing remarks). The class BQP, like its classical analogue BPP, is not known to have complete problems.
Here we present a new characterization of PromiseBQP which is related to the computation of powers
of large matrices.

It should not be too surprising that computational problems can be formulated in terms of “large”
matrices. For example, the transformations of a quantum computer can be represented by multiplication
of matrices of a certain type. However the matrix problems derived from this representation would
usually not be very natural in classical terms (they are, of course, natural, as physical questions about
the behavior of quantum systems). For instance, the problem of estimating an entry of products of
unitary matrices which are given by a tensor embedding of low-dimensional unitaries, is PromiseBQP-
complete, but it is not obvious where problems of this nature could arise in real-life applications referring
to the macroscopic world.

It is known that Hamiltonians with finite range interactions can generate sufficiently complex dy-
namics that can serve as autonomous programmable quantum computers [15, 14]. Therefore, it is not
unexpected that problems related to spectra and eigenvectors of self-adjoint operators lead to compu-
tationally hard problems. One might think that many of such problems could be solved efficiently on
a quantum computer. However, results proving that questions pertaining to the minimal eigenvalue of
Hamiltonians are PromiseQMA-complete [18, 17, 21] demonstrate that efficient algorithms are unlikely
to exist for this problem.

The situation changes dramatically when we do not aim at deciding whether some HamiltonianH
has an eigenvalue below a certain bound but only whether a given state|ψ〉 has a considerable component
in the eigenspace corresponding to a particular eigenvalue ofH. This problem can be answered by (1)
applyingH-measurements to|ψ〉 several times and (2) statistically evaluating the obtained samples. It
has been shown in [25] that measurements of so-calledk-local operators,1 applied to a basis state, solve
all problems in PromiseBQP. This proves that some class of problems concerning the spectral measure
of k-local self-adjoint operators associated with a given state characterize the class of problems that can
be solved efficiently on a quantum computer. Unfortunately, the requirement ofk-locality restricts the
applicability of these results since it is not clear wherek-local matrices occur apart from in the study of
quantum systems. For this reason we have considered sparse matrices that do not require such ak-local
structure and show that a very natural problem, namely the computation of diagonal entries of their
powers, characterizes the complexity class PromiseBQP.

The paper is organized as follows. InSection2 we define the complexity classes PromiseBQP and
BQP and clarify the difference. InSection3 we review known characterization of PromiseBQP. In
Section4 we define formally the problem of estimating diagonal entries and inSection5 we prove that
this problem can be solved efficiently on a quantum computer. To this end, we use the quantum phase

1An operator onn qubits is calledk-local if it can be decomposed into a sum of terms that act on at mostk qubits [18]
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estimation algorithm to implement a measurement of the observable defined by the sparse matrix. To do
this it is necessary that the time evolution defined by the sparse matrix can be implemented efficiently.
Since the diagonal entries of themth powers are themth statistical moments of the spectral measure,
we can estimate them after polynomially many measurements provided that the accuracy is sufficiently
high. An appropriate decision problem, namely to decide whether this statistical moment is greater than
a certain bound or smaller than another bound (given thepromisethat either of these alternatives is true),
is therefore in PromiseBQP.

In Section6 we show that diagonal entry estimation encompasses PromiseBQP. The proof relies
on an encoding of the quantum circuit which solves the computational problem considered into a sparse
self-adjoint matrix such that the spectral measure (and hence an appropriately chosen statistical moment)
corresponding to the initial state depends on the solution. InSection7 we show that the problem remains
PromiseBQP-hard if restricted to matrices with entries−1, 0, and 1. The idea is that the gates, which
are encoded into the constructed Hamiltonian, are not required to be unitary, even though the circuit
that then realizes the corresponding measurement is certainly unitary. This fact could be interesting in
its own right. For example, it could be possible that there are even more general ways of simulating
non-unitary circuits by encoding them into self-adjoint operators. In this context, it would be interesting
to clarify the relation to other measurement based schemes of computation [22, 7, 9].

2 Complexity theoretic clarifications: BQP and PromiseBQP

Certain complexity theoretic issues related to BQP are often blurred in the literature; therefore some
clarifications seem to be in order. BQP is a class of languages. But in the literature, when people
talk about BQP they often mean the promise-problem version (PromiseBQP). Exactly like with BPP
and AM, BQP itself is not known to have complete problems, butPromiseBQPhas complete promise
problems, and that is adequate for most purposes.

The notion of promise problems was introduced and initially studied in [10]. Oded Goldreich’s
article [12] provides a survey of the most important applications that this notion has found in complex-
ity theory. Most importantly, the author of this article argues that in some situations the use of promise
problems is indispensable. These include the notion of “unique solutions” (e. g. unique-SAT), the formu-
lation of “gap problems” (e. g. hardness of approximation), the identification of complete problems (e. g.
for the class Statistical Zero Knowledge), the indication of separations between certain computational
resources (e. g. the study of circuit complexity, derandomization, PCP and zero knowledge).

We refer the reader to this article for more details on promise problems and their applications. Our
definition of PromiseBQPis modeled after Oded Goldreich’s definition ofPromiseBPPin [12, Defi-
nition 1.2]. We use his definition ofKarp-reductionamong promise problems [12, Definition 1.3] for
reductions among problems in PromiseBQP.

Definition 2.1. A promise problemΠ is a pair of non-intersecting sets, denoted(ΠYES,ΠNO), i. e.,
ΠYES,ΠNO ⊆ {0,1}∗ andΠYES∩ΠNO = /0. The setΠYES∪ΠNO is called thepromise.

Standard “language recognition” problems are cast as the special case in which that promise is the
set of all strings, i. e.,ΠYES∪ΠNO = {0,1}∗. In this case we say that thepromise is trivial. The standard
definitions of complexity classes (i. e., classes of languages) extend naturally to promise problems. Then
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the set of NO-instances is not necessarily the complement of the set of YES-instances. Instead, the
requirement is only that these two sets are non-intersecting. Our definition of PromiseBQP is as follows:

Definition 2.2. PromiseBQP is the class of promise problems(ΠYES,ΠNO) that can be solved by a
uniform family2 of quantum circuits. More precisely, it is required that there is a uniform family of
quantum circuitsYr acting on poly(r) qubits that decide if a stringx of lengthr is a YES-instance or
NO-instance in the following sense. The application ofYr to the computational basis state|x,0〉 produces
the state

Yr |x,0〉= αx,0|0〉⊗ |ψx,0〉+αx,1|1〉⊗ |ψx,1〉 (2.1)

such that

1. for everyx ∈ ΠYES it holds that|αx,1|2 ≥ 2/3 and

2. for everyx ∈ ΠYES it holds that|αx,1|2 ≤ 1/3.

Equation (2.1) has to be read as follows. The input stringx determines the firstr bits. Furthermore,̀
additional ancilla bits are initialized to 0. AfterYr has been applied we interpret the first qubit as the
relevant output and the remainingr + `−1 output values are irrelevant. The size of the ancilla register
is polynomial inr.

Note that nothing is required in the definition of PromiseBQP with respect to inputs which violate
the promise. For example, the problem of deciding whether a string is contained in the promise could
be computationally much harder than the promise problem itself. It is clear that the promise on the
probability gap between the instances YES and NO is necessary to decide the problem by measuring the
output qubit. This motivates why promise problems appear quite naturally. We are now able to define
BQP:

Definition 2.3. The class BQP is the subclass of PromiseBQP consisting of those promise problems
for which the promise is trivial, i. e., is equal to the set of all strings{0,1}∗. In this case, the language
L = ΠYES is said to be a BQP-language.

One should emphasize that a language is in BQP if and only if the corresponding decision problem is
in PromiseBQP since the notion of BQP-language implies that its whole complement is a NO-instance.

Definition 2.4. The promise problemΠ = (ΠYES,ΠNO) is Karp-reducibleto the promise problemΠ′ =
(Π′

YES,Π
′
NO) if there exists a polynomial-time computable functionf (i. e., an efficiently computable

classical function) such that

1. for everyx ∈ ΠYES it holds thatf (x) ∈ Π′
YES and

2. for everyx ∈ ΠNO it holds thatf (x) ∈ Π′
NO.

2By “uniform circuit” we mean that there exists a polynomial time classical algorithm that generates the sequence of
quantum gates for every desired input length.
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3 Prior work on PromiseBQP-complete and PromiseBQP-hard problems

A simple observation showing that PromiseBQP-complete problems exist at all is the following. Any
computational model that is universal for quantum computing immediately leads to a complete problem
for PromiseBQP; namely, the problem of simulating that model and determining the output. For exam-
ple, the problem of estimating entries of unitary matrices specified by quantum circuits can clearly be
formulated as such a PromiseBQP-complete decision problem. So one can interpret the results proving
that models such as adiabatic, topological, or one-way quantum computing are universal to be proving
that the associated simulation problems are PromiseBQP-complete. However, such “quantum” problems
do not really help us in understanding the difference between quantum and classical computation. An
important challenge for complexity theory is therefore to construct problems that seem as classical as
possible but characterize nevertheless the power ofquantumcomputation.

Reference [19] characterizes the class PromiseBQP by a combinatorial problem, namely the problem
to evaluate the so-called quadratically signed weight enumerators. They are given by

S(A,B,x,y) = ∑
b,Ab=0

(−1)bTBbx|b|yn−|b| ,

whereA andB are 0,1 matrices withB of dimensionn by n andA of dimensionm by n. The variable
b in the sum ranges over column vectors of dimensionn having entries 0,1, bT denotes the transpose
of b, |b| is the Hamming weight ofb and all calculations involvingA, B, andb are modulo 2. Let
lwtr(A) denote the lower triangular part ofA. Then it is PromiseBQP-complete to determine the sign of
S(A, lwtr(A),k, `) for integersk, ` with a matrixA whose diagonal entries are 1. Here we are given the
promise that the modulus ofS(A, lwtr(A),k, `) is at least(k2 + `2)n/2/2. Since all matrices and vectors
have entries 0,1, this problem can certainly be considered as aclassicalproblem.

Another PromiseBQP-complete problem could be formulated in the context of knot theory. In [3]
it was shown that the quantum computer can efficiently provide estimations for the values of the Jones
polynomial when evaluated at roots of unity. In [24, 2] it was shown that this evaluation can solve every
problem in PromiseBQP. The idea is, roughly speaking, that the sequence of gates can be translated into
sequences of braids whose unitary representations correspond directly to the gates. These links between
quantum computing and knot theory are quite plausible when taking into account that the latter has been
successfully applied to topological quantum field theories and that quantum computers can be useful to
simulate topological field theories [11].

The complexity of certain quantum measurements was considered in [25] (see also [23]). It was
shown that sampling from the spectral measure of 4-localn-qubit observables can solve all problems in
PromiseBQP provided that every measurement precision being inverse polynomial inn can be achieved.
Even though this problem is completely quantum, it provided one of the key idea of this paper. The
essential insight is that measurement for appropriate observables, when applied to basis states, can solve
problems in PromiseBQP. We convert the problem of [25] into a quantum-free problem by (1) replacing
4-local operators with general sparse matrices and (2) by replacing direct statements on the distribution
of measurement outcomes with statements on the statistical moments of this probability measure. This
simplifies the problem considerably since these moments are directly given by diagonal entries of powers
of the matrix considered.
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4 Definition of diagonal entry estimation

In this section, we formulate a quantum-free PromiseBQP-complete problem. Before we define the
problem “diagonal entry estimation” we introduce the notion of sparse matrices and the spectral measure.
Here we call anN×N matrix A row-sparse (column-sparse) if it has no more thans= polylog(N) non-
zero entries in each row (column) and there is an efficiently computable functionf that specifies for
a given row (column) the non-zero entries and their positions (compare [4, 8, 6]). Here and in the
following the term “efficiency” is used in the sense that the computation time is polylogarithmic inN.

Let A be self-adjoint with spectral decomposition

A = ∑
λ

λ Qλ , (4.1)

and|ψ〉 be some normalized vector of sizeN. The spectral measure induced byA and|ψ〉 is a probability
distribution on the spectrum ofA such that the eigenvalueλ occurs with probability‖Qλ |ψ〉‖2. Noting
that Am = ∑λ λ mQλ , we infer the following fact which will be repeatedly used in the sequel. The
expected value ofAm in the state|ψ〉 is given by

〈ψ|Am|ψ〉= ∑
λ

λ
m〈ψ|Qλ |ψ〉 , (4.2)

i. e., by themth statistical moment of the spectral measure. The operator norm‖A‖ of A is given by the
maximum over all|λ | in Equation (4.1). In [25], eigenvalue sampling is defined to be a quantum process
that allows us to sample from a probability distribution that coincides with the spectral measure induced
by A and|ψ〉. Throughout the paper we refer to such a procedure asmeasuringthe observableA in the
state|ψ〉. Now we are ready to formalize the problem of estimating diagonal entries of powers of sparse
symmetric matrices.

Definition 4.1. An instance of the promise problem “diagonal entry estimation” is specified by a tuple
(A,b,m, j,ε,g), whereA is a symmetric sparse matrix of sizeN×N with real entries,b is an upper
bound on the norm‖A‖, m = polylog(N) is a positive integer,j ∈ [1, . . . ,N], ε = 1/polylog(N), and
g∈ [−bm,bm].

The task is to decide if such a tuple(A,b,m, j,ε,g) is an element ofΠYES or an element ofΠNO.
These instances are defined as follows:

1. (A,b,m, j,ε,g) is a YES-instance iff

(Am) j j ≥ g+ ε bm,

2. (A,b,m, j,ε,g) is a NO-instance iff

(Am) j j ≤ g− ε bm.

The promise is that only tuples inΠ = ΠYES∪ΠNO are considered. Any answer is acceptable when the
entry is not between the stated bounds.

Recall thatN is exponential in the input length and the description of the entries ofA is given by a
function that can be computed with running time inO(polylog(N)).

THEORY OFCOMPUTING, Volume 3 (2007), pp. 61–79 66

http://dx.doi.org/10.4086/toc


A SIMPLE PROMISEBQP-COMPLETEMATRIX PROBLEM

Special instances of this kind (matrices with entries 0,1) arise in graph theory. LetA be the adjacency
matrix of a graph withN vertices and degree bounded from above bys. Then the diagonal entry(Am) j j

of the mth power ofA is equal to the number of walks of lengthm that start and end at the vertexj.
Here sparseness means that for every node the number of neighbors is polynomial and that there is an
efficiently computable function specifying the set of neighbors for each node. A natural setting satisfying
these requirements is the following. Let the nodes represent the set of strings of lengthn = dlogk Ne
over some finite alphabet{α1, . . . ,αk} with constantk. The edges are implicitly specified by a given
equivalence relation on substrings of lengthl for some constantl in the sense that two strings are adjacent
if they can be obtained from each other by replacing one substring with an equivalent one. There is
certainly no promise that would here occur in a natural way. However, the promise is only needed to
formulate adecisionproblem. Even without the promise, we can efficientlyestimatethe number of
walks up to an accuracy that is specified by the gap in the promise decision problem.

The main contribution of this paper is the proof that diagonal entry estimation is PromiseBQP-
complete.

Theorem 4.2. The problem “diagonal entry estimation” is PromiseBQP-complete.

We emphasize that this result also provides an understanding of the complexity class BQP, not only
PromiseBQP because of the following observation:

Corollary 4.3. A language L belongs to BQP if and only if L is Karp-reducible to the problem “diagonal
entry estimation.” Here Karp-reduction is meant in the sense of reduction between promise problems; a
language recognition problem is simply a promise problem with trivial promise.

First, we prove that the problem “diagonal entry estimation” is in PromiseBQP. Second, we prove
that it is PromiseBQP-hard.

It is important to note that the scale on which the estimation has reasonable precision is given by
bm. If the a priori known bound on the norm is, for instance,b′ := 2b instead ofb, then the accuracy is
changed by the exponential factor 2m. Our results show that quantum computation outperforms classical
computation in estimating the diagonal entries (provided that PromiseBQP6= PromiseBPP). But one has
to be very careful on which scale this result remains true.

5 Diagonal entry estimation is in PromiseBQP

We now describe how to construct a circuit that solves diagonal entry estimation. Without loss of
generality we may assumeb = 1 and rescale the measurement results later. The main idea is as follows.
We measure the observableA in the state| j〉. We obtain an eigenvalueλ as result and computeλ m. The
average over these values over large sampling converges to the desired entry. The measurement is done
by (1) consideringA as a Hamiltonian of a quantum system and simulating the corresponding dynamics
Ut = exp(−iAt) and (2) applying the phase estimation algorithm toUt . The proof that this works follows
from a careful analysis of possible error sources. These are

1. errors due to the statistical nature of the phase estimation algorithm,

2. statistical errors due to estimation of the expected value from the empirical mean, and
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3. errors caused by the imperfect simulation of the Hamiltonian time evolution.

We show that all these errors can be made sufficiently small with polynomial resources only.

5.1 Inaccuracies of phase estimation

We embedA into the Hilbert space ofn qubits, wheren = dlog2Ne. Let us first assume that the unitary
matrixU := exp(iA) can be implemented exactly. We apply the phase estimation procedure which works
as follows [20]. We start by addingp ancillas to the qubits on whichU acts. The idea is to control the
implementation of the 2̀th power ofU by the`th control qubit. More precisely, we have the controlled
gates

Ẁ := |0〉〈0|(`)⊗1+ |1〉〈1|(`)⊗U2`
,

where the superscript(`) indicates that the projectors|0〉〈0| and |1〉〈1| act on the`th control qubit,
respectively. Note that the decomposition ofW1 into elementary gates is obtained by replacing each
elementary gate in the circuit implementingU with a corresponding controlled gate. Similarly,Ẁ is
realized by applying the quantum circuit implementing the corresponding controlledU-gate 2̀ times.
SetW := W1W2 · · ·Wp. The phase estimation circuit consists of applying Hadamard gates on all control
qubits, the circuitW, and the inverse Fourier transform on the control qubits. The desired valuea is ob-
tained by measuring the control qubits in the computational basis. Let|ψ〉 be an arbitrary eigenvector of
U with unknown eigenvalueei2πϕ for some phaseϕ ∈ [0,1). In order to ensure that the phase estimation
algorithm outputs a random valuea∈ {0, . . . ,2p−1} such that

Pr(|ϕ −a/2p|< η) > 1−θ , (5.1)

for someθ ,η > 0 it is sufficient [20] to set

p := dlog(1/η)e+ dlog
(
2+(1/(2θ)

)
e .

Let |ψ〉 be an eigenvector ofA with unknown eigenvalueλ ∈ [−1,1]. In order to determineλ
approximately using the outcomea in a phase estimation withU = exp(iA) we proceed as follows.
First, we have to take into account thatϕ > 1/2 corresponds to negative valuesλ . Second, we have to
consider that the scaling differs by the factor 2π. Finally, we may use the additional information that
not allλ in [−π,π) are possible, but only those in[−1,1]. All outputs that would actually correspond to
eigenvaluesλ in [1,π] and[−π,−1) are therefore interpreted as+1 or−1, respectively. Therefore, we
compute valuesz from the outputa by

z :=


a(2π/2p) for 0≤ a < 2p/(2π) ,
1 for 2p/(2π)≤ a < 2p/2,
−1 for 2p/2≤ a < 2p−2p/(2π) ,
a(2π/2p)−2π for 2p−2p/(2π)≤ a < 2p .

This defines the random variableZ whose valuesz are approximations forλ that satisfy the following
error bound:

Pr
(
|λ −Z|< 2πη

)
> 1−θ .
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This bound follows from Equation (5.1) by appropriate rescaling (note that our reinterpretation of values
in [−π,−1] and [1,π) explained above can only decrease the error unless it was already greater than
π −1). Consequently, we have for every eigenstate|ψi〉 of A with eigenvalueλi the statement

|E|ψi〉(Z
m)−λ

m
i | ≤ 2θ +2πmη , (5.2)

whereE|ψi〉(Z
m) denotes the expected value ofZm in the state|ψi〉. The first term on the right-hand side

corresponds to the unlikely case that the measurement outcome deviates by more than 2πη from the
true value. Since we do not have outcomesz smaller than−1 or greater than 1 the maximal error is at
most 2. This leads to the error term 2θ . The second term corresponds to the case|λi −z| ≤ 2πη , which
implies|λ m

i −zm| ≤ (2πη)m becauseλi ,z∈ [−1,+1].
We make the error in Equation (5.2) smaller thanε/3 by choosing the parametersθ andη such that

θ < ε/12 andη < ε/(12π m). The number of control qubits can be chosen to be

p := 2dlog((48m)/ε)e . (5.3)

This is sufficient since

dlog(1/η)e+ dlog
(
2+(1/(2θ)

)
< 2dlog

(
(48m)/ε

)
e . (5.4)

We decompose| j〉 into A-eigenstates

| j〉= ∑
i

βi |ψi〉 ,

and obtain the statement
E| j〉(Z

m) = ∑
i

|βi |2E|ψi〉(Z
m)

by linearity arguments and

(Am) j j = 〈 j|Am| j〉= ∑
i

〈 j|ψi〉〈ψi | j〉λ m
i = ∑

i

|βi |2λ
m
i .

Using the triangle inequality and the fact that the right-hand side of Equation (5.2) is smaller thanε/3
for eachi we obtain ∣∣E| j〉(Zm)− (Am) j j

∣∣ < ε/3. (5.5)

5.2 Errors caused by finite sampling

Now we sample the measurementk times in order to estimate the expected valueE| j〉(Zm). Since we will
later also consider the simulation error we want to estimate(Am) j j up to an error of 2ε/3. To achieve
this, it is sufficient to estimateE| j〉(Zm) up to an error ofε/3.

Let Zm denote the average value of the random variableZm after samplingk times. Since the values
of Zm are between−1 and 1 we can give an upper bound for the probability that the average is not
ε/3-close to the expected value. By Hoeffding’s inequality [13, Theorem 2] we get

Pr
(∣∣Zm−E| j〉(Z

m)
∣∣ ≥ ε

3

)
≤ 2exp

(−ε2

18
k
)

.
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In summary, we have shown forb= 1 that we can distinguish between the two cases inDefinition4.1
with exponentially small error probability. Forb 6= 1 we have to rescale the inaccuracy of the estimation
by bm. The whole procedure including repeated measurements and averaging can certainly be performed
by a single quantum circuitYr in the sense ofDefinition2.2.

5.3 Inaccuracies of the simulation ofexp(−iAt)

We now take into account thatU = exp(iA) cannot be implemented exactly. It is known that the dynamics
generated byA can be simulated efficiently ifA is sparse [4, 8, 6]. More precisely, for eacht we can
construct a circuitV which isδ -close toUt = exp(−iAt) with respect to the operator norm such that the
required number of gates increases only polynomially in the parametersn, t, and 1/δ . We analyze the
error resulting from usingV instead ofU , where‖V−U‖ ≤ δ .

The phase estimation contains 2p+1− 1 copies of the controlled-V gate. Therefore the circuitFV

implementing the phase estimation procedure withV instead ofU deviates fromFU by at most 2p+1 δ

with respect to the operator norm, that is,‖FU −FV‖ ≤ 2p+1 δ .
Let q and q̃ denote the probability distributions of outcomes when measuring the control register

after the phase estimation procedure has been implemented withV andU , respectively. Thè1- distance
betweenq andq̃ is then defined by

‖q− q̃‖1 := ∑
a∈{0,...,2p−1}

|q(a)− q̃(a)|

whereq(a) andq̃(a) denote the probabilities of obtaining the outcomea according to the measureq and
q̃, respectively. To upper bound‖q− q̃‖1 we define a functionsby s(a) := 1 if q(a) > ã ands(a) :=−1
otherwise. LetQ be the observable defined by measuring the ancillas and applyings to the outcomea.
Then we can write‖q− q̃‖1 as a difference of expected values:

〈ψ|F†
UQFU −F†

V QFV |ψ〉 ≤ 2‖FU −FV‖‖Q‖ ≤ 2p+2
δ .

This implies that the corresponding expected values ofZm can differ by at most 2p+2 δ becauseZ takes
values only in the interval[−1,1]. We choose the simulation accuracy such thatδ = ε/(3 ·2p+2) and
obtain an additional error term of at mostε/3 in Equation (5.5). Using that we have chosenp as in
Equation (5.3) we obtain thatδ ∈O(ε3m2).

Putting everything together we obtain a total error of at mostε. Furthermore, this can be achieved
by using time and space resources which are polynomial inn, m, and 1/ε. This completes the proof that
diagonal entry estimation is in PromiseBQP.

It should be mentioned that off-diagonal entries(Am)i j can also be estimated efficiently on the same
scale using superpositions|i〉± | j〉 since the values〈i|Am| j〉 can be expressed in terms of differences
of the statistical moments of the spectral measure induced by those states. The scale on which the
estimation can be done efficiently is then also given byε bm with an appropriately modifiedε which is
still inverse polynomial inn. However, since PromiseBQP-hardness requires only diagonal entries we
have focused our attention on the latter.

It is natural to ask whether the above result extends to non-symmetric matrices (note that the gen-
eralization to complex-valued hermitian matrices is obvious since we did not make use of the fact that
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the entries are real). The central part of the algorithm is a measurement of “the observableA,” i. e., an
procedure that samples from its spectral measure. The most general set of matrices that define a spectral
measure is the set of normal operators, i. e., operators that commute with their adjoints. If we decompose
normal matrices into

Re(A) :=
1
2
(A+A†) and Im(A) :=

1
2i

(A−A†) ,

the “real” and the “imaginary part” commute. We can thus implement both corresponding measurement
procedures (by quantum phase estimation as above) one after anotherwithout preparing a new state.
Then the output pair(µ,ν) defines a complex numberz := µ + iν which is close to an eigenvalue ofA.
Because of inaccuracies in the measurement procedure we may obtain values with|z|> ‖A‖. In analogy
to the methods above we would then instead take the closest value on the circle of radius‖A‖. This
ensures that we keep the estimation errors, again, small compared to‖A‖m.

6 Diagonal entry estimation is PromiseBQP-hard

To show that the estimation of diagonal entries can solve all problems in PromiseBQP we prove that a
particular instance is already PromiseBQP-hard. It is given by the problem to determine the sign of the
diagonal entry when an appropriate lower bound on its modulus is provided by the promise.

We assume that we are given a quantum circuitYr that is able to decide whether a stringx is in
YES or NO in the sense ofDefinition 2.2. UsingYr we construct a self-adjoint operatorA such that the
corresponding spectral measure induced by an appropriate initial state depends on whetherx is in YES
or in NO. Note that the proofs for PromiseQMA-completeness of eigenvalue problems for Hamiltonians
have already used this idea to construct a self-adjoint operator whose spectral properties encode a given
quantum circuit [18, 17, 21]. In these constructions, theexistenceof eigenvalues of a given Hamiltonian
depends on whether or not an input state exists that is accepted by a certain circuit. In PromiseBQP, the
problem is only to decide whether agivenstate is accepted and not whether such a state exists. Likewise,
the problem is not to decide whether an eigenvalue of the constructed observableexistswhich lies in a
certain interval. Instead, it refers only to the spectral measure induced by agivenstate. This difference
changes the complexity from PromiseQMA to PromiseBQP.

For these reasons, our construction is based on [25] and not on work related to PromiseQMA. Ref-
erence [25] established the PromiseBQP-hardness of approximatek-local measurements. This result
relied on the ideas in [23] where the PSPACE-hardness ofk-local measurements was proved provided
that exponentially small error is desired.

However, our description below will only at one point refer to these results since the observable we
construct here is only required to be sparse, in contrast to thek-locality assumed in [25, 23]. In some
analogy to [16, 25] we construct a circuitU that is obtained fromYr as follows: First, apply the circuit
Yr . Second, apply aσz-gate. Third, implementY†

r . The resulting circuitU is shown inFigure1. We
denote the dimension of the Hilbert spaceU acts on byÑ.

Let U be generated by a concatenation of theM elementary gatesU0, . . . ,UM−1. The results in [5]
imply that we can simulateU by gates having only real entries. To this end, a qubit is added that is used
to represent the real and imaginary part of the quantum state. Then the real circuit reproduces exactly the
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|x1, . . . ,xr〉

Yr

σz

Y†
r

|0, . . . ,0〉

Figure 1:Circuit U constructed from the original circuitYr . Whenever the answer to the BQP problem is no, the
output state ofU is close to the input state|x,0〉 ≡ |x1, . . . ,xn,0, . . . ,0〉. Otherwise, the state|x,0〉 is only restored
after applyingU twice.

output probabilities of the original circuit. We assume furthermore thatM is odd, which is automatically
satisfied if we decomposeY†

r in analogy toYr and implement aσz-gate betweenYr andY†
r . We define

the unitary matrix

W :=
M−1

∑̀
=0

|`+1〉〈`|⊗U` , (6.1)

acting onCM ⊗CÑ. Here the+ sign in the index has always to be read moduloM. We obtain

WM =
M−1

∑̀
=0

|`〉〈`|⊗U`+M · · ·U`+1U` .

BecauseU2 = 1 we have(WM)2 = 1. Thus,WM can only have the eigenvalues±1. This defines a
decomposition of the spaceCM ⊗CÑ into symmetric and antisymmetricW-invariant subspacesS+ and
S−, respectively with corresponding projectors

Q± :=
1
2
(1±WM) .

In the following we use the definition|sx〉 := |0〉⊗ |x,0〉 for the initial state and restrict attention to the
span of the orbit {

W`|sx〉
}

with ` ∈ N . (6.2)

Moreover, we use the abbreviationsα0 = αx,0 andα1 = αx,1. We consider first the two extreme cases
|α1|= 0 and|α1|= 1. If |α1|= 0 the orbit (6.2) is M-periodic and the action ofW is isomorphic to the
action of a cyclic shift inM dimensions, i. e., the mapping|`〉 7→ |(`+1) modM〉, where|`〉 corresponds
to W`|sx〉 with ` = 0,1, . . . ,M−1.

If |α1| = 1 the action ofW corresponds to a cyclic shift with an additional phase−1, i. e., the
mapping|`〉 7→ |`+1〉 for ` = 0,1, . . . ,M−2 and|M−1〉 7→−|0〉. In the first case, the state|sx〉 induces
a spectral measureR(0) being equal to the uniform distribution on theMth roots of unity, i. e., the values
exp(−iπ 2`/M) for ` = 0, . . . ,M−1. In the second case,|sx〉 induces the measureR(1) being equal to
the uniform distribution on the values exp(−iπ (2`+1)/M) for ` = 0, . . . ,M−1. We observe thatR(1)

andR(0) coincide up to a reflection of the real axis in the complex plane.
In the general case, the orbit defines an 2M-dimensional space whose orthonormal basis vectors are

obtained by renormalizing the vectors

W`Q+|sx〉 and W`Q−|sx〉 with ` = 0,1, . . . ,M−1.
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We obtain then a convex sum ofR(0) andR(1) as spectral measures induced byW and|sx〉. The following
calculation shows that|α0|2 and|α1|2 define the corresponding weights:

〈sx|Q+|sx〉=
1
2
〈sx|1+WM|sx〉=

1
2
〈x,0|1+U |0,x〉=

1
2
(1+ 〈x,0|Y†

r σzYr |0,x)〉= |α0|2 ,

where the last equality follows easily by replacingYr |x,0〉 and its adjoint with the expression in Equa-
tion (2.1) and its adjoint. Thus, we obtain the spectral measure

R := |α0|2R(0) + |α1|2R(1) .

We define the self-adjoint operator

A :=
1
2
(W+W†) . (6.3)

The support of the spectral measure corresponding toA is directly given by the real part of the support
of R. To obtain the corresponding probabilities one has to take into account that in many cases two
different eigenvalues ofW lead to the same eigenvalue ofA.

To calculate the distribution of outcomes forA-measurements we observe thatR(0) leads to a distri-
butionP(0) on the(M−1)/2 eigenvalues

λ
(0)
` = cos

2π`

M
for ` = 0, . . . ,(M−1)/2

with probabilitiesP(0)
1 := 1/M andP(0)

` := 2/M for ` > 1. Likewise,R(1) leads to a distributionP(1) on
the(M−1)/2 values

λ
(1)
` = cos

π(2`+1)
M

for ` = 0, . . . ,(M−1)/2

with probabilitiesP(1)
(M−1)/2 = 1/M andP(1)

` = 2/M for ` < (M−1)/2. As it was true forR(0) andR(1),

the measuresP(0) andP(1) coincide up to a reflection.
We now set| j〉 := |sx〉, i. e., the input state is considered as thejth basis vector ofCM ⊗CÑ. Then

the diagonal entry(Am) j j coincides with themth moment of the spectral measure:

(Am) j j = 〈 j|Am| j〉= ∑
λ

λ
mP(λ ) ,

whereλ runs over all eigenvalues of the restriction ofA to the smallestA-invariant subspace containing
| j〉, andP(λ ) denotes its probability according to the spectral measure corresponding toA. Since the
latter is a convex sum ofP(0) andP(1) we may write(Am) j j as the convex sum

(Am) j j = (1−|α1|2)∑̀
(

λ
(0)
`

)m
P(0)
` + |α1|2∑̀

(
λ

(1)
`

)m
P(1)

l

=: (1−|α1|2)E0 + |α1|2E1 . (6.4)

The valuesE0 andE1 can be considered as themth statistical moments of random variables on[−1,1]
whose distributions are given byP(0) andP(1), respectively.
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In order to see how the value(Am) j j changes with|α1| we observe that,

E0 =
(M−1)/2

∑̀
=0

(
λ

(0)
`

)m
P(0)
` ≥ P(0)

0 +
(

λ
(0)
(M−1)/2

)m
=

1
M

+
(

λ
(0)
(M−1)/2

)m
.

Here we have used thatλ
(0)
0 = 1 and that the eigenvalues are numbered in a decreasing order. Thus,

λ(M−1)/2 is the smallest one. Because of the reflection symmetry of the measures we haveE1 = −E0.

Now we choosemsufficiently large such that the term(λ (0)
(M−1)/2)

m is negligible compared to 1/M since
we have thenE0−E1 ≈ 2/M which is a sufficient difference for our purpose.

In order to achieve this we setm := M3. We have

λ
(0)
(M−1)/2 =−cos(π/M) >−1+

π2

2M2 −
π4

4!M4 >−1+
π2

4M2 ,

where the last inequality holds for sufficiently largeM. Due to

lim
M→∞

(1− π2

4M2)M2
= e

−π2
4

we conclude that
(cos(π/M))M3

< (e−
π2
4 )M ,

and hence

E0 >
1
M
− (e−

π2
4 )M >

3
4M

, (6.5)

where we have, again, assumedM to be sufficiently large. To see how(Am) j j changes with|α1| we
recall

(Am) j j = (1−|α1|2)E0 + |α1|2E1 = (1−2|α1|2)E0 ,

by Equation (6.4) and the reflection symmetry. Using the worst cases|α1|2 = 1/3 for x ∈ ΠNO and
|α1|2 = 2/3 for x∈ ΠYES we obtain

(Am) j j =
1
3

E0 and (Am) j j =−1
3

E0 .

UsingE0 > 3/(4M) from Equation (6.5) we obtain

(Am) j j >
1

4M
,

if the answer is no and

(Am) j j <− 1
4M

otherwise. Settingg := 0 (seeDefinition 4.1) we may defineε := 1/(4M). Then the diagonal entry is
greater thang+ε if x∈ΠYES and smaller thang−ε if x∈ΠNO. The construction ofA as the real part of
a unitary matrix ensures that‖A‖ ≤ 1 =: b. This shows that we can find an inverse polynomial accuracy
ε such that an estimation of the diagonal entry up to an errorε bm allows us to check whetherx∈ ΠYES.
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It remains to show thatA is row-sparse and column-sparse in the sense defined inSection4. First
we observe the following. For a gateU` that only acts onk qubits non-trivially, the matrix describingU`

contains only non-zero entries〈b|U`|b′〉 for those pairsb,b′ of binary words for whichb andb′ differ at
most at thesek positions. For a givenb, one can efficiently check which one of these possible 2k entries
is non-zero and similarly for a givenb′. Hence we have shown sparseness ofU`. It is easy to show that
sparseness is also true forW as defined in Equation (6.1) using the gatesU` and also forA as defined in
Equation (6.3).

Note that estimating of off-diagonal entries only is also PromiseBQP-hard. This can be seen by
replacing the original matrixA with

A′ := A⊗
(

1/2 1/2
1/2 1/2

)
,

which has obviously the same norm asA since the right-hand matrix is an orthogonal projector. Then
we have

(A′)m = Am⊗
(

1/2 1/2
1/2 1/2

)
.

We obtain
(Am) j j = 2〈 j,0|(A′)m| j,1〉 ,

where we have used the short-hand notation| j, i〉 := | j〉⊗|i〉 for i = 0,1. Hence we have reproduced the
diagonal entry ofAm by an off-diagonal entry of(A′)m.

7 Restriction to matrices with entries 0,1,-1

So far we have allowed for general real-valued matrix entries. We may strengthen the result of the
preceding section in the sense that diagonal entry estimation remains PromiseBQP-hard if only the
entries 0,±1 are possible.

It is known that Toffoli and Hadamard gates are universal for quantum computation [1] (in the sense
of encoded universality) . For our purposes, the following modified universal set is useful. LetT andH
denote the set of Toffoli gates and the set of Hadamard gates, respectively. We considerTleft ∪Tright ∪H,
where we have definedTleft := TH andTright := HT. In words,Tleft is, for instance, the set of gates that
are obtained by applying an arbitrary Toffoli-gate followed by a Hadamard gate on an arbitrary qubit.
One checks easily that all gates in the universal setTright∪Tleft ∪H have only entries 0,±1/

√
2. To

construct our new version of the matrixA we replace the gates ofYr with gates taken from our universal
set. The problem is that we should simulateσz using an odd number of gates. Since it is by no means
obvious whether and how this could be achieved we replaceσz with a gate fromTleft∩Tright. The latter
is a tensor product of a Hadamard and a Toffoli gate. The Hadamard gate acts on some extra qubit
(prepared in the state|0〉) that is not used in the computation. The Toffoli gate copies the output to an
additional qubit (this is done by initializing a third additional qubit to|1〉). One verifies easily that the
unitary matrixW defined by these replacements acts as a shift in 2M dimensions whenever the output
is 1. We obtain then a uniform mixture of the two spectral measuresP(0) andP(1) defined in Section6
instead of the measureP(1) . To see what happens when the output is 0 we observe that the eigenvectors
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of the Hadamard gate define a decomposition of the initial state into two components. On the first
componentW acts as anM-dimenisonal shift and on the second as aM-dimensional shift with phase
factor−1. Therefore we obtain also a mixture of the formr0P(0) +(1− r0)P(1). But now the weight
r0 is equal to 1/(4− 2

√
2) = |〈0|ψ+〉|2 where|ψ+〉 is the eigenvector of the Hadamard gate for the

eigenvalue 1. The difference between the diagonal entries ofAm for YES-instances and NO-instances is
thus only reduced by a constant factor and the problem remains PromiseBQP-hard.

By rescaling with
√

2 we obtain a matrixA with entries 0,±1. The rescaling is clearly irrelevant for
the diagonal entry estimation problem since we now have spectral values within the interval[−

√
2,
√

2]
and the accuracy required byDefinition4.1changes by the factor(

√
2)m accordingly.

8 Conclusions

We have shown that the estimation of diagonal entries of powers of symmetric sparse matrices is
PromiseBQP-complete when the demanded accuracy scales appropriately with the powers of the op-
erator norm.

The quantum algorithm proposed here for solving this problem uses the fact that measurements of the
corresponding observable allow us to obtain enough information on the probability measure defined by
the eigenvector decomposition of the considered basis state. Given the assumption that PromiseBQP6=
PromiseBPP, i. e., that a quantum computer is more powerful than a classical computer, the required
information on the spectral measure cannot be obtained by any efficient classical algorithm. This is
remarkable since the determination of spectral measures is a problem whose relevance is not restricted
to applications in quantum theory only.
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